1,093 research outputs found

    A spread spectrum approach to time-domain near-infrared diffuse optical imaging using inexpensive optical transceiver modules

    Get PDF
    We introduce a compact time-domain system for near-infrared spectroscopy using a spread spectrum technique. The proof-of-concept single channel instrument utilises a low-cost commercially available optical transceiver module as a light source, controlled by a Kintex 7 field programmable gate array (FPGA). The FPGA modulates the optical transceiver with maximum-length sequences at line rates up to 10Gb/s, allowing us to achieve an instrument response function with full width at half maximum under 600ps. The instrument is characterised through a set of detailed phantom measurements as well as proof-of-concept in vivo measurements, demonstrating performance comparable with conventional pulsed time-domain near-infrared spectroscopy systems

    Implementation of the Water Framework Directive: Lessons Learned and Future Perspectives for an Ecologically Meaningful Classification Based on Phytoplankton of the Status of Greek Lakes, Mediterranean Region

    Get PDF
    The enactment of the Water Framework Directive (WFD) initiated scientific efforts to develop reliable methods for comparing prevailing lake conditions against reference (or nonimpaired) states, using the state of a set biological elements. Drawing a distinction between impaired and natural conditions can be a challenging exercise. Another important aspect is to ensure that water quality assessment is comparable among the different Member States. In this context, the present paper offers a constructive critique of the practices followed during the WFD implementation in Greece by pinpointing methodological weaknesses and knowledge gaps that undermine our ability to classify the ecological quality of Greek lakes. One of the pillars of WDF is a valid lake typology that sets ecological standards transcending geographic regions and national boundaries. The national typology of Greek lakes has failed to take into account essential components. WFD compliance assessments based on the descriptions of phytoplankton communities are oversimplified and as such should be revisited. Exclusion of most chroococcal species from the analysis of cyanobacteria biovolume in Greek lakes/reservoirs and most reservoirs in Spain, Portugal, and Cyprus is not consistent with the distribution of those taxa in lakes. Similarly, the total biovolume reference values and the indices used in classification schemes reflect misunderstandings of WFD core principles. This hampers the comparability of ecological status across Europe and leads to quality standards that are too relaxed to provide an efficient target for the protection of Greek/transboundary lakes such as the ancient Lake Megali Prespa

    Flow Cytometry as a Diagnostic Tool in the Early Diagnosis of Aggressive Lymphomas Mimicking Life-Threatening Infection

    Get PDF
    Aggressive lymphomas can present with symptoms mimicking life-threatening infection. Flow cytometry (FC) is usually recommended for the classification and staging of lymphomas in patients with organomegaly and atypical cells in effusions and blood, after the exclusion of other possible diagnoses. FC may also have a place in the initial diagnostic investigation of aggressive lymphoma. Three cases are presented here of highly aggressive lymphomas in young adults, which presented with the clinical picture of fever of unknown origin (FUO) in patients severely ill. All followed a life-threatening clinical course, and two developed the hemophagocytic syndrome (HPS), but microbiological, immunological, and morphological evaluation and immunohistochemistry (IHC) failed to substantiate an early diagnosis. FC was the technique that provided conclusive diagnostic evidence of lymphoma, subsequently verified by IHC. Our experience with these three cases highlights the potential role of FC as an adjunct methodology in the initial assessment of possible highly aggressive lymphoma presenting with the signs and symptoms of life-threatening infection, although the definitive diagnosis should be established by biopsy. In such cases, FC can contribute to the diagnosis of lymphoma, independently of the presence of HPS

    Angiosarcoma of Kidney: A Case Report and Review of Literature

    Get PDF

    Stress Physiology of Lactic Acid Bacteria

    Get PDF
    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.</p

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore