289 research outputs found

    Brain Knowledge and the Prevalence of Neuromyths among Prospective Teachers in Greece

    Get PDF
    Although very often teachers show a great interest in introducing findings from the field of neuroscience in their classrooms, there is growing concern about the lack of academic instruction on neuroscience on teachers' curricula because this has led to a proliferation of neuromyths. We surveyed 479 undergraduate (mean age = 19.60 years, SD = 2.29) and 94 postgraduate students (mean age = 28.52 years, SD = 7.16) enrolled in Departments of Education at the University of Thessaly and the National and Kapodistrian University of Athens. We used a 70-item questionnaire aiming to explore general knowledge on the brain, neuromyths, the participants' attitude toward neuroeducation as well as their reading habits. Prospective teachers were found to believe that neuroscience knowledge is useful for teachers (90.3% agreement), to be somewhat knowledgeable when it comes to the brain (47.33% of the assertions were answered correctly), but to be less well informed when it comes to neuroscientific issues related to special education (36.86% correct responses). Findings further indicate that general knowledge about the brain was found to be the best safeguard against believing in neuromyths. Based on our results we suggest that prospective teachers can benefit from academic instruction on neuroscience. We propose that such instruction takes place in undergraduate courses of Departments of Education and that emphasis is given in debunking neuromyths, enhancing critical reading skills, and dealing with topics relevant to special education

    Patterns of individual differences in conceptual understanding and arithmetical skill: a meta-analysis

    Get PDF
    Some theories from cognitive psychology and mathematics education suggest that children's understanding of mathematical concepts develops together with their knowledge of mathematical procedures. However, previous research into children's understanding of the inverse relationship between addition and subtraction suggests that there are individual differences in the way that this concept develops. To determine whether these differences are reliable and reflect alternative paths of development, we examined data from 14 studies of children's understanding of inversion. Cluster analyses and meta-analytic techniques were used to quantify the size of the inversion effect and examine factors influencing its size and to test the stability of patterns of individual differences across the studies. Evidence was found for reliable patterns of individual differences, which have implications for current theories of concept development

    A meta-analysis of line bisection and landmark task performance in older adults

    Get PDF
    Young adults exhibit a small asymmetry of visuospatial attention that favours the left side of space relative to the right (pseudoneglect). However, it remains unclear whether this leftward bias is maintained, eliminated or shifted rightward in older age. Here we present two meta-analyses that aimed to identify whether adults aged ≥50 years old display a group-level spatial attention bias, as indexed by the line bisection and the landmark tasks. A total of 69 datasets from 65 studies, involving 1654 participants, were analysed. In the meta-analysis of the line bisection task (n = 63), no bias was identified for studies where the mean age was ≥50, but there was a clear leftward bias in a subset where all individual participants were aged ≥50. There was no moderating effect of the participant’s age or sex, line length, line position, nor the presence of left or right cues. There was a small publication bias in favour of reporting rightward biases. Of note, biases were slightly more leftward in studies where participants had been recruited as part of a stand-alone older group, compared to studies where participants were recruited as controls for a clinical study. Similarly, no spatial bias was observed in the meta-analysis of the landmark task, although the number of studies included was small (n = 6). Overall, these results indicate that over 50s maintain a group-level leftward bias on the line bisection task, but more studies are needed to determine whether this bias can be modulated by stimulus- or state-dependent factors

    A meta-analysis of the line bisection task in children

    Get PDF
    Meta-analyses have shown subtle, group-level asymmetries of spatial attention in adults favouring the left hemispace (pseudoneglect). However, no meta-analysis has synthesized data on children. We performed a random-effects meta-analysis of spatial biases in children aged ≤16 years. Databases (PsycINFO, Web of Science & Scopus) and pre-print servers (bioRxiv, medRxiv & PsyArXiv) were searched for studies involving typically developing children with a mean age of ≤16, who were tested using line bisection. Thirty-three datasets, from 31 studies, involving 2101 children, were included. No bias was identified overall, but there was a small leftward bias in a subgroup where all children were aged ≤16. Moderator analysis found symmetrical neglect, with right-handed actions resulting in right-biased bisections, and left-handed actions in left-biased bisections. Bisections were more leftward in studies with a higher percentage of boys relative to girls. Mean age, hand preference, and control group status did not moderate biases, and there was no difference between children aged ≤7 and ≥7 years, although the number of studies in each moderator analysis was small. There was no evidence of small study bias. We conclude that pseudoneglect may be present in children but is dependent on individual characteristics (sex) and/or task demands (hand used). Registration: Open Science Framework (https://osf.io/n68fz/)

    Hand preference and mathematical learning difficulties: New data from Greece, the United Kingdom, and Germany and two meta-analyses of the literature

    Get PDF
    SP and FA are funded by the Royal Society. The UK Medical Research Council and Wellcome Trust (Grant ref: 217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and Silvia Paracchini will serve as guarantors for the reporting of the ALSPAC analysis in this paper. A comprehensive list of grants funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf).Increased rates of atypical handedness are observed in neurotypical individuals who are low-performing in mathematical tasks as well as in individuals with special educational needs, such as dyslexia. This is the first investigation of handedness in individuals with Mathematical Learning Difficulties (MLD). We report three new studies (N = 134; N = 1,893; N = 153) and two sets of meta-analyses (22 studies; N = 3,667). No difference in atypical hand preference between MLD and Typically Achieving (TA) individuals was found when handedness was assessed with self-report questionnaires, but weak evidence of a difference was found when writing hand was the handedness criterion in Study 1 (p = .049). Similarly, when combining data meta-analytically, no hand preference differences were detected. We suggest that: (i) potential handedness effects require larger samples, (ii) direction of hand preference is not a sensitive enough measure of handedness in this context, or that (iii) increased rates of atypical hand preference are not associated with MLD. The latter scenario would suggest that handedness is specifically linked to language-related conditions rather than conditions related to cognitive abilities at large. Future studies need to consider hand skill and degree of hand preference in MLD.PostprintPeer reviewe

    Handedness in twins : meta-analyses

    Get PDF
    Funding: Open Access funding enabled and organized by Projekt DEAL. JS is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 418445085). SP is funded by the Royal Society (UF150663).Background: In the general population, 10.6% of people favor their left hand over the right for motor tasks. Previous research suggests higher prevalence of atypical (left-, mixed-, or non-right-) handedness in (i) twins compared to singletons, and in (ii) monozygotic compared to dizygotic twins. Moreover, (iii) studies have shown a higher rate of handedness concordance in monozygotic compared to dizygotic twins, in line with genetic factors playing a role for handedness. Methods: By means of a systematic review, we identified 59 studies from previous literature and performed three sets of random effects meta-analyses on (i) twin-to-singleton Odds Ratios (21 studies, n = 189,422 individuals) and (ii) monozygotic-to-dizygotic twin Odds Ratios (48 studies, n = 63,295 individuals), both times for prevalence of left-, mixed-, and non-right-handedness. For monozygotic and dizygotic twin pairs we compared (iii) handedness concordance Odds Ratios (44 studies, n = 36,217 twin pairs). We also tested for potential effects of moderating variables, such as sex, age, the method used to assess handedness, and the twins’ zygosity. Results: We found (i) evidence for higher prevalence of left- (Odds Ratio = 1.40, 95% Confidence Interval = [1.26, 1.57]) and non-right- (Odds Ratio = 1.36, 95% Confidence Interval = [1.22, 1.52]), but not mixed-handedness (Odds Ratio = 1.08, 95% Confidence Interval = [0.52, 2.27]) among twins compared to singletons. We further showed a decrease in Odds Ratios in more recent studies (post-1975: Odds Ratio = 1.30, 95% Confidence Interval = [1.17, 1.45]) compared to earlier studies (pre-1975: Odds Ratio = 1.90, 95% Confidence Interval = [1.59–2.27]). While there was (ii) no difference between monozygotic and dizygotic twins regarding prevalence of left- (Odds Ratio = 0.98, 95% Confidence Interval = [0.89, 1.07]), mixed- (Odds Ratio = 0.96, 95% Confidence Interval = [0.46, 1.99]), or non-right-handedness (Odds Ratio = 1.01, 95% Confidence Interval = [0.91, 1.12]), we found that (iii) handedness concordance was elevated among monozygotic compared to dizygotic twin pairs (Odds Ratio = 1.11, 95% Confidence Interval = [1.06, 1.18]). By means of moderator analyses, we did not find evidence for effects of potentially confounding variables. Conclusion: We provide the largest and most comprehensive meta-analysis on handedness in twins. Although a raw, unadjusted analysis found a higher prevalence of left- and non-right-, but not mixed-handedness among twins compared to singletons, left-handedness was substantially more prevalent in earlier than in more recent studies. The single large, recent study which included birth weight, Apgar score and gestational age as covariates found no twin-singleton difference in handedness rate, but these covariates could not be included in the present meta-analysis. Together, the secular shift and the influence of covariates probably make it unsafe to conclude that twinning has a genuine relationship to handedness.Publisher PDFPeer reviewe

    Four meta-analyses across 164 studies on atypical footedness prevalence and its relation to handedness

    Get PDF
    Funding: Deutsche Forschungsgemeinschaft (DFG) through the Research Training Group “Situated Cognition” (GRK 2185/1) and Grant number OC 127/9-1. The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and S.P. and J.S. will serve as guarantors for the analysis of the ALSPAC data presented in this paper. J.S. is funded by the DFG (Project number: 418445085). S.P. is funded by the Royal Society. D.P.C. is funded by the Leverhulme Trust. Open Access funding was provided by Projekt DEAL. We acknowledge the support by the DFG Open Access Publication Funds of the Ruhr-Universität Bochum.Human lateral preferences, such as handedness and footedness, have interested researchers for decades due to their pronounced asymmetries at the population level. While there are good estimates on the prevalence of handedness in the population, there is no large-scale estimation on the prevalence of footedness. Furthermore, the relationship between footedness and handedness still remains elusive. Here, we conducted meta-analyses with four different classification systems for footedness on 145,135 individuals across 164 studies including new data from the ALSPAC cohort. The study aimed to determine a reliable point estimate of footedness, to study the association between footedness and handedness, and to investigate moderating factors influencing footedness. We showed that the prevalence of atypical footedness ranges between 12.10% using the most conservative criterion of left-footedness to 23.7% including all left- and mixed-footers as a single non-right category. As many as 60.1% of left-handers were left-footed whereas only 3.2% of right-handers were left-footed. Males were 4.1% more often non-right-footed compared to females. Individuals with psychiatric and neurodevelopmental disorders exhibited a higher prevalence of non-right-footedness. Furthermore, the presence of mixed-footedness was higher in children compared to adults and left-footedness was increased in athletes compared to the general population. Finally, we showed that footedness is only marginally influenced by cultural and social factors, which play a crucial role in the determination of handedness. Overall, this study provides new and useful reference data for laterality research. Furthermore, the data suggest that footedness is a valuable phenotype for the study of lateral motor biases, its underlying genetics and neurodevelopment.Publisher PDFPeer reviewe

    Human handedness : a meta-analysis

    Get PDF
    Silvia Paracchini is a Royal Society University Research Fellow. Judith Schmitz is a DFG fellow and received funding from the School of Medicine, University of St Andrews for this specific work.Across time and place, right hand preference has been the norm, but what is the precise prevalence of left- and right-handedness? Frequency of left-handedness has shaped and underpinned different fields of research, from cognitive neuroscience to human evolution, but reliable distributional estimates are still lacking. While hundreds of empirical studies have assessed handedness, a large-scale, comprehensive review of the prevalence of handedness and the factors that moderate it, is currently missing. Here, we report 5 meta-analyses on hand preference for different manual tasks and show that left-handedness prevalence lies between 9.3% (using the most stringent criterion of left-handedness) to 18.1% (using the most lenient criterion of nonright-handedness), with the best overall estimate being 10.6% (10.4% when excluding studies assessing elite athletes’ handedness). Handedness variability depends on (a) study characteristics, namely year of publication and ways to measure and classify handedness, and (b) participant characteristics, namely sex and ancestry. Our analysis identifies the role of moderators that require taking into account in future studies on handedness and hemispheric asymmetries. We argue that the same evolutionary mechanisms should apply across geographical regions to maintain the roughly 1:10 ratio, while cultural factors, such as pressure against left-hand use, moderate the magnitude of the prevalence of left-handedness. Although handedness appears as a straightforward trait, there is no universal agreement on how to assess it. Therefore, we urge researchers to fully report study and participant characteristics as well as the detailed procedure by which handedness was assessed and make raw data publicly available.PostprintPeer reviewe
    corecore