356 research outputs found

    Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development

    Get PDF
    Tumors are composed of different types of cancer cells that contribute to tumor heterogeneity. Among these populations of cells, cancer stem cells (CSCs) play an important role in cancer initiation and progression. Like their stem cells counterpart, CSCs are also characterized by self-renewal and the capacity to differentiate. A particular population of CSCs is constituted by mesenchymal stem cells (MSCs) that differentiate into cells of mesodermal characteristics. Several studies have reported the potential pro-or anti-tumorigenic influence of MSCs on tumor initiation and progression. In fact, MSCs are recruited to the site of wound healing to repair damaged tissues, an event that is also associated with tumorigenesis. In other cases, resident or migrating MSCs can favor tumor angiogenesis and increase tumor aggressiveness. This interplay between MSCs and cancer cells is fundamental for cancerogenesis, progression, and metastasis. Therefore, an interesting topic is the relationship between cancer cells, CSCs, and MSCs, since contrasting reports about their respective influences have been reported. In this review, we discuss recent findings related to conflicting results on the influence of normal and CSCs in cancer development. The understanding of the role of MSCs in cancer is also important in cancer management

    A new inhibitor of glucose-6-phospate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo

    Get PDF
    Pentose Phosphate Pathway (PPP) is a major glucose metabolism pathway which has a fundamental role in cancer growth and metastasis. Even though PPP blockade has been pointed out as a very promising strategy against cancer, effective anti-PPP agents are not still available in the clinical setting. Here, we demonstrate that the natural molecule polydatin inhibits glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP. Polydatin blocks G6PD causing accumulation of reactive oxygen species and strong increase of endoplasmic reticulum stress. These effects are followed by cell cycle block in S phase, an about 50% of apoptosis, and 60% inhibition of invasion in vitro. Accordingly, in an orthotopic metastatic model of tongue cancer, 100 mg/kg polydatin induced an about 30% tumor size reduction with an about 80% inhibition of lymph node metastases and 50% reduction of lymph node size (p< 0.005). Polydatin is not toxic in animals up to a dose of 200 mg/kg and a phase II clinical trial shows that a is also well tolerated in humans (40 mg twice a day for 90 days). Thus, polydatin may be used as a reliable tool to limit human cancer growth and metastatic spread

    Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials

    Full text link
    Numerous stem cell niches are present in the different tissues and organs of the adult human body. Among these tissues, dental pulp, entrapped within the 'sealed niche' of the pulp chamber, is an extremely rich site for collecting stem cells. In this study, we demonstrate that the isolation of human dental pulp stem cells by the explants culture method (hD-DPSCs) allows the recovery of a population of dental mesenchymal stem cells that exhibit an elevated proliferation potential. Moreover, we highlight that hD-DPSCs are not only capable of differentiating into osteoblasts and chondrocytes but are also able to switch their genetic programme when co-cultured with murine myoblasts. High levels of MyoD expression were detected, indicating that muscle-specific genes in dental pulp cells can be turned on through myogenic fusion, confirming thus their multipotency. A perivascular niche may be the potential source of hD-DPSCs, as suggested by the consistent Ca(2+) release from these cells in response to endothelin-1 (ET-1) treatment, which is also able to significantly increase cell proliferation. Moreover, response to ET-1 has been found to be superior in hD-DPSCs than in DPSCs, probably due to the isolation method that promotes release of stem/progenitor cells from perivascular structures. The ability to isolate, expand and direct the differentiation of hD-DPSCs into several lineages, mainly towards myogenesis, offers an opportunity for the study of events associated with cell commitment and differentiation. Therefore, hD-DPSCs display enhanced differentiation abilities when compared to DPSCs, and this might be of relevance for their use in therapy

    Increased fucosylation has a pivotal role in invasive and metastatic properties of head and neck cancer stem cells

    Get PDF
    Oral squamous cell carcinoma (OSCC) is an aggressive malignancy with high mortality rates. Major challenges for OSCC management include development of resistance to therapy and early formation of distant metastases. Cancer stem cells (CSCs) have emerged as important players in both pathologic mechanisms. Increased fucosylation activity and increased expression of fucosylated polysaccharides, such as Sialyl Lewis X (SLex), are associated with invasion and metastasis. However, the role of fucosylation in CSCs has not been elucidated yet. We used the spheroid culture technique to obtain a CSC-enriched population and compared orospheres with adherent cells. We found that orospheres expressed markers of CSCs and metastasis at higher levels, were more invasive and tumorigenic, and were more resistant to cisplatin/radiation than adherent counterparts. We found fucosyltransferases FUT3 and FUT6 highly up-regulated, increased SLexexpression and increased adhesion by shear flow assays in orospheres. Inhibition of fucosylation negatively affected orospheres formation and invasion of oral CSCs. These results confirm that orospheres are enriched in CSCs and that fucosylation is of paramount importance for CSC invasion. In addition, SLexmay play a key role in CSC metastasis. Thus, inhibition of fucosylation may be used to block CSCs and metastatic spread

    Glucose-6-phosphate dehydrogenase blockade potentiates tyrosine kinase inhibitor effect on breast cancer cells through autophagy perturbation

    Get PDF
    Background: Glucose-6-phospate dehydrogenase (G6PD) is the limiting enzyme of the pentose phosphate pathway (PPP) correlated to cancer progression and drug resistance. We previously showed that G6PD inhibition leads to Endoplasmic Reticulum (ER) stress often associated to autophagy deregulation. The latter can be induced by target-based agents such as Lapatinib, an anti-HER2 tyrosine kinase inhibitor (TKI) largely used in breast cancer treatment. Methods: Here we investigate whether G6PD inhibition causes autophagy alteration, which can potentiate Lapatinib effect on cancer cells. Immunofluorescence and flow cytometry for LC3B and lysosomes tracker were used to study autophagy in cells treated with lapatinib and/or G6PD inhibitors (polydatin). Immunoblots for LC3B and p62 were performed to confirm autophagy flux analyses together with puncta and colocalization studies. We generated a cell line overexpressing G6PD and performed synergism studies on cell growth inhibition induced by Lapatinib and Polydatin using the median effect by Chou-Talay. Synergism studies were additionally validated with apoptosis analysis by annexin V/PI staining in the presence or absence of autophagy blockers. Results: We found that the inhibition of G6PD induced endoplasmic reticulum stress, which was responsible for the deregulation of autophagy flux. Indeed, G6PD blockade caused a consistent increase of autophagosomes formation independently from mTOR status. Cells engineered to overexpress G6PD became resilient to autophagy and resistant to lapatinib. On the other hand, G6PD inhibition synergistically increased lapatinib-induced cytotoxic effect on cancer cells, while autophagy blockade abolished this effect. Finally, in silico studies showed a significant correlation between G6PD expression and tumour relapse/resistance in patients. Conclusions: These results point out that autophagy and PPP are crucial players in TKI resistance, and highlight a peculiar vulnerability of breast cancer cells, where impairment of metabolic pathways and autophagy could be used to reinforce TKI efficacy in cancer treatment

    Cytoplasmic Interactions between the Glucocorticoid Receptor and HDAC2 Regulate Osteocalcin Expression in VPA-Treated MSCs

    Get PDF
    Epigenetic regulation has been considered an important mechanism for influencing stem cell differentiation. In particular, histone deacetylases (HDACs) have been shown to play a role in the osteoblast differentiation of mesenchymal stem cells (MSCs). In this study, the effect of the HDAC inhibitor, valproic acid (VPA), on bone formation in vivo by MSCs was determined. Surprisingly, VPA treatment, unlike other HDAC inhibitors, produced a well-organized lamellar bone tissue when MSCs\u207bcollagen sponge constructs were implanted subcutaneously into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice, although a decrease of osteocalcin (OC) expression was observed. Consequently, we decided to investigate the molecular mechanisms by which VPA exerts such effects on MSCs. We identified the glucocorticoid receptor (GR) as being responsible for that downregulation, and suggested a correlation between GR and HDAC2 inhibition after VPA treatment, as evidenced by HDAC2 knockdown. Furthermore, using co-immunoprecipitation analysis, we showed for the first time in the cytoplasm, binding between GR and HDAC2. Additionally, chromatin immunoprecipitation (ChIP) assays confirmed the role of GR in OC downregulation, showing recruitment of GR to the nGRE element in the OC promoter. In conclusion, our results highlight the existence of a cross-talk between GR and HDAC2, providing a mechanistic explanation for the influence of the HDAC inhibitor (namely VPA) on osteogenic differentiation in MSCs. Our findings open new directions in targeted therapies, and offer new insights into the regulation of MSC fate determination

    Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis

    Get PDF
    Aims/hypothesisThis study examined whether the capsule which encases islets of Langerhans in the NOD mouse pancreas represents a specialised extracellular matrix (ECM) or basement membrane that protects islets from autoimmune attack.MethodsImmunofluorescence microscopy using a panel of antibodies to collagens type IV, laminins, nidogens and perlecan was performed to localise matrix components in NOD mouse pancreas before diabetes onset, at onset of diabetes and after clinical diabetes was established (2-8.5 weeks post-onset).ResultsPerlecan, a heparan sulphate proteoglycan that is characteristic of basement membranes and has not previously been investigated in islets, was localised in the peri-islet capsule and surrounding intra-islet capillaries. Other components present in the peri-islet capsule included laminin chains alpha2, beta1 and gamma1, collagen type IV alpha1 and alpha2, and nidogen 1 and 2. Collagen type IV alpha3-alpha6 were not detected. These findings confirm that the peri-islet capsule represents a specialised ECM or conventional basement membrane. The islet basement membrane was destroyed in islets where intra-islet infiltration of leucocytes marked the progression from non-destructive to destructive insulitis. No changes in basement membrane composition were observed before leucocyte infiltration.Conclusions/interpretationThese findings suggest that the islet basement membrane functions as a physical barrier to leucocyte migration into islets and that degradation of the islet basement membrane marks the onset of destructive autoimmune insulitis and diabetes development in NOD mice. The components of the islet basement membrane that we identified predict that specialised degradative enzymes are likely to function in autoimmune islet damage.H. F. Irving-Rodgers, A. F. Ziolkowski, C. R. Parish, Y. Sado, Y. Ninomiya, C. J. Simeonovic, R. J. Rodger
    • …
    corecore