24 research outputs found

    Health Care Response to CCHF in US Soldier and Nosocomial Transmission to Health Care Providers, Germany, 2009

    No full text
    In 2009, a lethal case of Crimean–Congo hemorrhagic fever (CCHF), acquired by a US soldier in Afghanistan, was treated at a medical center in Germany and resulted in nosocomial transmission to 2 health care providers (HCPs). After his arrival at the medical center (day 6 of illness) by aeromedical evacuation, the patient required repetitive bronchoscopies to control severe pulmonary hemorrhage and renal and hepatic dialysis for hepatorenal failure. After showing clinical improvement, the patient died suddenly on day 11 of illness from cerebellar tonsil herniation caused by cerebral/cerebellar edema. The 2 infected HCPs were among 16 HCPs who received ribavirin postexposure prophylaxis. The infected HCPs had mild or no CCHF symptoms. Transmission may have occurred during bag-valve-mask ventilation, breaches in personal protective equipment during resuscitations, or bronchoscopies generating infectious aerosols. This case highlights the critical care and infection control challenges presented by severe CCHF cases, including the need for experience with ribavirin treatment and postexposure prophylaxis

    Phase 1/2a Trial of Plasmodium vivax Malaria Vaccine Candidate VMP001/AS01B in Malaria-Naive Adults: Safety, Immunogenicity, and Efficacy.

    No full text
    A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use.We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 ÎĽg, 30 ÎĽg, or 60 ÎĽg respectively of VMP001, all formulated in 500 ÎĽL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls.The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period.This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials

    Ad35.CS.01-RTS,S/AS01 Heterologous Prime Boost Vaccine Efficacy against Sporozoite Challenge in Healthy Malaria-NaĂŻve Adults.

    No full text
    In an observer blind, phase 2 trial, 55 adults were randomized to receive one dose of Ad35.CS.01 vaccine followed by two doses of RTS,S/AS01 (ARR-group) or three doses of RTS,S/AS01 (RRR-group) at months 0, 1, 2 followed by controlled human malaria infection.ARR and RRR vaccine regimens were well tolerated. Efficacy of ARR and RRR groups after controlled human malaria infection was 44% (95% confidence interval 21%-60%) and 52% (25%-70%), respectively. The RRR-group had greater anti-CS specific IgG titers than did the ARR-group. There were higher numbers of CS-specific CD4 T-cells expressing > 2 cytokine/activation markers and more ex vivo IFN-Îł enzyme-linked immunospots in the ARR-group than the RRR-group. Protected subjects had higher CS-specific IgG titers than non-protected subjects (geometric mean titer, 120.8 vs 51.8 EU/ml, respectively; P = .001).An increase in vaccine efficacy of ARR-group over RRR-group was not achieved. Future strategies to improve upon RTS,S-induced protection may need to utilize alternative highly immunogenic prime-boost regimens and/or additional target antigens.ClinicalTrials.gov NCT01366534

    Intracellular cytokine analysis shows the presence of antigen-specific cytokine production by CD4+ cells.

    No full text
    <p>Peripheral blood mononuclear cells from vaccinated subjects were stimulated with VMP001 and production of IL-2, IFN-γ and TNF-α was assessed. Pie chart depicts the percentage of CD4<sup>+</sup> cytokine-producing cells for each cohort 2 weeks post 3<sup>rd</sup> vaccination (Day of challenge). G, 2 and T indicate IFN-γIL-2 and TNF-α, respectively. Cytokine producers are represented by a “+” and non-producers by a “-”.</p
    corecore