93 research outputs found

    Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes

    Get PDF
    Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β2-adrenergic receptor (β2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β2AR. We show that the select ligands bind preferentially to different predicted conformers of β2AR, and identify a role of β2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. © 2012 Isin et al

    Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to quantify the active biological compounds in <it>C. officinalis </it>flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay.</p> <p>Results</p> <p>Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested.</p> <p>Antioxidant activity in methanolic extracts was correlated with the polyphenol content.</p> <p>Conclusions</p> <p>The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the <it>C. officinalis </it>flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm.</p

    Mice Null for Calsequestrin 1 Exhibit Deficits in Functional Performance and Sarcoplasmic Reticulum Calcium Handling

    Get PDF
    In skeletal muscle, the release of calcium (Ca2+) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca2+ release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca2+ buffering as well as its potential for modulating RyR1, the L-type Ca2+ channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca2+]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca2+ content and SR Ca2+ release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca2+ release with single action potentials and a collapse of the Ca2+ release with repetitive trains. Under voltage clamp, SR Ca2+ release flux and total SR Ca2+ release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca2+ release flux appears to be solely due to elimination of the slowly decaying component of SR Ca2+ release, whereas the rapidly decaying component of SR Ca2+ release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca2+] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca2+]free in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca2+ buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca2+ release

    Network Neighbors of Drug Targets Contribute to Drug Side-Effect Similarity

    Get PDF
    In pharmacology, it is essential to identify the molecular mechanisms of drug action in order to understand adverse side effects. These adverse side effects have been used to infer whether two drugs share a target protein. However, side-effect similarity of drugs could also be caused by their target proteins being close in a molecular network, which as such could cause similar downstream effects. In this study, we investigated the proportion of side-effect similarities that is due to targets that are close in the network compared to shared drug targets. We found that only a minor fraction of side-effect similarities (5.8 %) are caused by drugs targeting proteins close in the network, compared to side-effect similarities caused by overlapping drug targets (64%). Moreover, these targets that cause similar side effects are more often in a linear part of the network, having two or less interactions, than drug targets in general. Based on the examples, we gained novel insight into the molecular mechanisms of side effects associated with several drug targets. Looking forward, such analyses will be extremely useful in the process of drug development to better understand adverse side effects

    Response characteristics in the apex of the gerbil cochlea studied through auditory nerve recordings

    Get PDF
    In this study, we analyze the processing of low-frequency sounds in the cochlear apex through responses of auditory nerve fibers (ANFs) that innervate the apex. Single tones and irregularly spaced tone complexes were used to evoke ANF responses in Mongolian gerbil. The spike arrival times were analyzed in terms of phase locking, peripheral frequency selectivity, group delays, and the nonlinear effects of sound pressure level (SPL). Phase locking to single tones was similar to that in cat. Vector strength was maximal for stimulus frequencies around 500 Hz, decreased above 1 kHz, and became insignificant above 4 to 5 kHz. We used the responses to tone complexes to determine amplitude and phase curves of ANFs having a characteristic frequency (CF) below 5 kHz. With increasing CF, amplitude curves gradually changed from broadly tuned and asymmetric with a steep low-frequency flank to more sharply tuned and asymmetric with a steep high-frequency flank. Over the same CF range, phase curves gradually changed from a concave-upward shape to a concave-downward shape. Phase curves consisted of two or three approximately straight segments. Group delay was analyzed separately for these segments. Generally, the largest group delay was observed near CF. With increasing SPL, most amplitude curves broadened, sometimes accompanied by a downward shift of best frequency, and group delay changed along the entire range of stimulus frequencies. We observed considerable across-ANF variation in the effects of SPL on both amplitude and phase. Overall, our data suggest that mechanical responses in the apex of the cochlea are considerably nonlinear and that these nonlinearities are of a different character than those known from the base of the cochlea

    Total and corrected antioxidant capacity in hemodialyzed patients

    Get PDF
    BACKGROUND: Oxidative stress may play a critical role in the vascular disease of end stage renal failure and hemodialysis patients. Studies, analyzing either discrete analytes and antioxidant substances, or the integrated total antioxidant activity of human plasma during hemodialysis, give contradictory results. METHODS: Recently, we have introduced a new automated method for the determination of Total Antioxidant Capacity (TAC) of human plasma. We have serially measured TAC and corrected TAC (cTAC: after subtraction of the interactions due to endogenous uric acid, bilirubin and albumin) in 10 patients before the onset of the dialysis session, 10 min, 30 min, 1 h, 2 h and 3 h into the procedure and after completion of the session. RESULTS: Our results indicate that TAC decreases, reaching minimum levels at 2 h. However, corrected TAC increases with t(1/2 )of about 30 min. We then repeated the measurements in 65 patients undergoing dialysis with different filters (36 patients with ethylene vinyl alcohol copolymer resin filter -Eval-, 23 patients with two polysulfone filters -10 with F6 and 13 with PSN140-, and 6 patients with hemophan filters). Three specimens were collected (0, 30, 240 min). The results of this second group confirm our initial results, while no significant difference was observed using either filter. CONCLUSIONS: Our results are discussed under the point of view of possible mechanisms of modification of endogenous antioxidants, and the interaction of lipid- and water-soluble antioxidants

    Drug Discovery Using Chemical Systems Biology: Identification of the Protein-Ligand Binding Network To Explain the Side Effects of CETP Inhibitors

    Get PDF
    Systematic identification of protein-drug interaction networks is crucial to correlate complex modes of drug action to clinical indications. We introduce a novel computational strategy to identify protein-ligand binding profiles on a genome-wide scale and apply it to elucidating the molecular mechanisms associated with the adverse drug effects of Cholesteryl Ester Transfer Protein (CETP) inhibitors. CETP inhibitors are a new class of preventive therapies for the treatment of cardiovascular disease. However, clinical studies indicated that one CETP inhibitor, Torcetrapib, has deadly off-target effects as a result of hypertension, and hence it has been withdrawn from phase III clinical trials. We have identified a panel of off-targets for Torcetrapib and other CETP inhibitors from the human structural genome and map those targets to biological pathways via the literature. The predicted protein-ligand network is consistent with experimental results from multiple sources and reveals that the side-effect of CETP inhibitors is modulated through the combinatorial control of multiple interconnected pathways. Given that combinatorial control is a common phenomenon observed in many biological processes, our findings suggest that adverse drug effects might be minimized by fine-tuning multiple off-target interactions using single or multiple therapies. This work extends the scope of chemogenomics approaches and exemplifies the role that systems biology has in the future of drug discovery

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    An immune response directed to proteinase and adhesin functional epitopes protects against Porphyromonas gingivalis-induced periodontal bone loss

    No full text
    C1 - Journal Articles RefereedPorphyromonas gingivalis, a pathogen associated with periodontitis, bound to fibrinogen, fibronectin, hemoglobin, and collagen type V with a similar profile to that of its major virulence factor, the cell surface RgpA-Kgp proteinase-adhesin complex. Using peptide-specific, purified Abs in competitive inhibition ELISAs and epitope mapping assays, we have identified potential adhesin binding motifs (ABMs) of the RgpA-Kgp complex responsible for binding to host proteins. The RgpA-Kgp complex and synthetic ABM and proteinase active site peptides conjugated to diphtheria toxoid, when used as vaccines, protected against P. gingivalis-induced periodontal bone loss in the murine periodontitis model. The most efficacious peptide and protein vaccines were found to induce a high-titer IgG1 Ab response. Furthermore, mice protected in the lesion and periodontitis models had a predominant P. gingivalis-specific IL-4 response, whereas mice with disease had a predominant IFN-gamma response. The peptide-specific Abs directed to the ABM2 sequence (EGLATATTFEEDGVA) protected against periodontal bone loss and inhibited binding of the RgpA-Kgp complex to fibrinogen, fibronectin, and collagen type V. Furthermore, the peptide-specific Abs directed to the ABM3 sequence (GTPNPNPNPNPNPNPGT) protected against periodontal bone loss and inhibited binding to hemoglobin. However, the most protective Abs were those directed to the active sites of the RgpA and Kgp proteinases. The results suggest that when the RgpA-Kgp complex, or functional binding motif or active site peptides are used as a vaccine, they induce a Th2 response that blocks function of the RgpA-Kgp complex and protects against periodontal bone loss
    corecore