12,244 research outputs found
Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: the case study of PCBs in the Adriatic Sea
Modelling bioaccumulation processes at the food web level is the main step to analyse the effects of pollutants at the global
ecosystem level. A crucial question is understanding which species play a key role in the trophic transfer of contaminants to
disclose the contribution of feeding linkages and the importance of trophic dependencies in bioaccumulation dynamics. In this
work we present a computational framework to model the bioaccumulation of organic chemicals in aquatic food webs, and to
discover key species in polluted ecosystems. As a result, we reconstruct the first PCBs bioaccumulation model of the Adriatic food
web, estimated after an extensive review of published concentration data. We define a novel index aimed to identify the key species
in contaminated networks, Sensitivity Centrality, and based on sensitivity analysis. The index is computed from a dynamic ODE
model parametrised from the estimated PCBs bioaccumulation model and compared with a set of established trophic indices of
centrality. Results evidence the occurrence of PCBs biomagnification in the Adriatic food web, and highlight the dependence of
bioaccumulation on trophic dynamics and external factors like fishing activity. We demonstrate the effectiveness of the introduced
Sensitivity Centrality in identifying the set of species with the highest impact on the total contaminant flows and on the efficiency
of contaminant transport within the food web
No more time to stay ‘single’ in the detection of Anisakis pegreffii, A. simplex (s. s.) and hybridization events between them: a multi-marker nuclear genotyping approach
A multi-marker nuclear genotyping approach was performed on larval and adult specimens of Anisakis spp. (N = 689) collected from fish and cetaceans in allopatric and sympatric areas of the two species Anisakis pegreffii and Anisakis simplex
(s. s.), in order to: (1) identify specimens belonging to the parental taxa by using nuclear markers (allozymes loci) and sequence analysis of a new diagnostic nuclear DNA locus (i.e. partial sequence of the EF1 α−1 nDNA region) and (2) recognize hybrid categories. According to the Bayesian clustering algorithms, based on those markers, most of the individuals
(N = 678) were identified as the parental species [i.e. A. pegreffii or A. simplex (s. s.)], whereas a smaller portion (N = 11)
were recognized as F1 hybrids. Discordant results were obtained when using the polymerase chain reaction–restriction
fragment length polymorphisms (PCR–RFLPs) of the internal transcribed spacer (ITS) ribosomal DNA (rDNA) on
the same specimens, which indicated the occurrence of a large number of ‘hybrids’ both in sympatry and allopatry.
These findings raise the question of possible misidentification of specimens belonging to the two parental Anisakis and
their hybrid categories derived from the application of that single marker (i.e. PCR–RFLPs analysis of the ITS of
rDNA). Finally, Bayesian clustering, using allozymes and EF1 α−1 nDNA markers, has demonstrated that hybridization
between A. pegreffii and A. simplex (s. s.) is a contemporary phenomenon in sympatric areas, while no introgressive hybridization takes place between the two species
Effect of range enrichment on performance, behavior, and forage intake of free-range chickens
SUMMARY The aim of the present study was to analyze the effect of range enrichment (trees or tall grass stand) on the performance and herbage intake of free-range chicken. This trial was conducted in 2 different seasons (winter and summer) comparing a standard free-range system with 2 kinds of range enrichment: a stand of sorghum (a tall grass) and olive trees. Two hundred fifty male naked neck chickens were used in each season and system; performance, behavior, forage intake, and body lesions were recorded. Productive performance was not affected by range enrichment. However, in the presence of trees or tall grass stand, no predation losses were experienced; whereas, in the standard paddock, cases of predation by raptors or crows were registered, mainly during the first period of rearing. Consequently, mortality rate was significantly lower in the enriched environment. Control chickens stayed indoors more rather than forage in the pasture, whereas, in enriched environments, birds spent more time outdoors and widely exploited the available pasture. Forage intake was significantly influenced by rearing system and season; chickens reared under olive trees had higher herbage ingestion, exploring the available area up to almost 50 m from the hut. With the olive trees, chickens also showed the lowest frequency of foot and breast damage
Unsupervised Human Action Recognition with Skeletal Graph Laplacian and Self-Supervised Viewpoints Invariance
This paper presents a novel end-to-end method for the problem of skeleton-based unsupervised human action recognition. We propose a new architecture with a convolutional autoencoder that uses graph Laplacian regularization to model the skeletal geometry across the temporal dynamics of actions. Our approach is robust towards viewpoint variations by including a self-supervised gradient reverse layer that ensures generalization across camera views. The proposed method is validated on NTU-60 and NTU-120 large-scale datasets in which it outperforms all prior unsupervised skeleton-based approaches on the cross-subject, cross-view, and cross-setup protocols. Although unsupervised, our learnable representation allows our method even to surpass a few supervised skeleton-based action recognition methods. The code is available in: www.github. com/IIT-PAVIS/UHAR_Skeletal_Laplacia
Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size
Atlantic cod (Gadus morhua) is among the most important commercial fish species on the world market. Its
infection by ascaridoid nematodes has long been known, Pseudoterranova even being named cod worm. In the
present study, 755 individuals were sampled in the Barents, Baltic and North Seas during 2012–2014.
Prevalences for Anisakis in whole fish and in fillets in the different fishing areas varied from 16 to 100% and
from 12 to 90% respectively. Abundance was also greatly influenced by the sampling area. Generalized additive
model results indicate higher numbers of Anisakis in the North Sea, even after the larger body size was accounted
for. Numbers and prevalence of Anisakis were positively related to fish length or weight. The prevalence of
parasites in whole fish and in fillets was also influenced by the season, with the spring displaying a peak for the
prevalence in whole fish and, at the same time, a drop for the prevalence in fillets. Whereas 46% of cod had
Anisakis larvae in their fillets, the majority (39%) had parasites mainly in the ventral part of the fillet and only
12% had parasites in their dorsal part. This observation is of importance for the processing of the fish. Indeed,
the trimming of the ventral part of the cod fillet would allow the almost total elimination of ascaridoids except
for cod from the Baltic Sea where there was no difference between the dorsal and the ventral part.
The presence of other ascaridoid genera was also noticeable in some areas. For Pseudoterranova, the highest
prevalence (45%) in whole fish was observed in the Northern North Sea, whereas the other areas had prevalences between 3 and 16%. Contracaecum was present in every commercial size cod sampled in the Baltic Sea
with an intensity of up to 96 worms but no Contracaecum was isolated from the Central North Sea. Non-zoonotic
Hysterothylacium was absent from the Baltic Sea but with a prevalence of 83% in the Barents and the Northern
North Sea.
A subsample of worms was identified with genetic-molecular tools and assigned to the species A. simplex (s.s.),
A. pegreffii, P. decipiens (s.s.), P. krabbei, C. osculatum and H. aduncum. In addition to high prevalence and
abundance values, the cod sampled in this study presented a diversity of ascaridoid nematodes with a majority of
fish displaying a co-infection. Out of 295 whole infected fish, 269 were co-infected by at least 2 genera
Innovative nanomaterials for fuel cells fed with biogas
Challenges on sustainability promote research policy focused on renewable-energy technology development in order to enhance global energy security, local energy independence, environmental protection and economic growth. Biomass resources offer renewable energies that can play a key role in the current global strategies for reducing greenhouse gas emissions by partially replacing fossil fuels. The conversion of biomass chemical energy into electrical energy and cogenerated heat can be obtained by fuel cells. In particular, molten carbonate fuel cell (MCFC)
is the most suitable device for bioenergy production because it can be fed directly with biogas, whose primary constituents all improve the performance of the cell.
However hydrogen sulfide, which is the main biogas impurity, poisons the traditional nickel based anode, affecting the power and the endurance of the cell. In order to overcome this problem, an innovative anode material that resists against the sulfide corrosions has been developed. This material, made of a nanostructured and porous nickel support covered with a thin layer of ceria, exhibits high sulfur tolerance and recovering capability
Innovative nanomaterials for fuel cells fed with biogas
Challenges on sustainability promote research policy focused on renewable-energy technology development in order to enhance global energy security, local energy independence, environmental protection and economic growth. Biomass resources offer renewable energies that can play a key role in the current global strategies for reducing greenhouse gas emissions by partially replacing fossil fuels. The conversion of biomass chemical energy into electrical energy and cogenerated heat can be obtained by fuel cells. In particular, molten carbonate fuel cell (MCFC)
is the most suitable device for bioenergy production because it can be fed directly with biogas, whose primary constituents all improve the performance of the cell.
However hydrogen sulfide, which is the main biogas impurity, poisons the traditional nickel based anode, affecting the power and the endurance of the cell. In order to overcome this problem, an innovative anode material that resists against the sulfide corrosions has been developed. This material, made of a nanostructured and porous nickel support covered with a thin layer of ceria, exhibits high sulfur tolerance and recovering capability
- …