220 research outputs found

    Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase

    Get PDF
    This study was aimed at comparatively investigating the hydrolysis of crystalline and amorphous poly-(ethylene terephthalate) films by alkali and cutinase. Changes of surface properties were investigated by FTIR spectroscopy (ATR mode). The A1341/A1410 and I1120/I1100 absorbance ratios, and the full width at half maximum of the carbonyl stretching band (FWHM1715) were used to evaluate the polymer crystallinity and its changes upon hydrolysis. The effect of different treatments on chain orientation was evaluated by calculating R ratios of appropriate bands. The spectroscopic indexes showed that both alkali and enzyme treatments induced structural and conformational rearrangements with a consequent increase in crystallinity in both amorphous and crystalline films. The crystalline PET film was modified more strongly by alkali than by cutinase, while the opposite occurred for the amorphous one. The trend of the water contact angle (WCA) clearly indicates that alkali is more effective than cutinase in enhancing hydrophilicity of PET films and that the effect is stronger on amorphous than on crystalline films. The values of WCA correlate well with the FTIR indexes calculated from the spectra of hydrolyzed crystalline PET films. The mechanism of the surface hydrolysis of PET by alkali and cutinase is discussed

    Ultralong Organic Phosphorescence in the Solid State: The Case of Triphenylene Cocrystals with Halo- and Dihalo-penta/ tetrafluorobenzene

    Get PDF
    The polycyclic aromatic hydrocarbon (PAH) triphenylene (TP) has been reacted with halo-pentafluorobenzene (XF5, X = Br, I) and 1,4-dihalo-tetrafluorobenzene (X2F4, X = Br, I) to yield the corresponding cocrystals TP·BrF5, TP·Br2F4, TP·IF5, and TP·I2F4 form I. These materials have been synthesized by dissolving TP into an excess of liquid or molten coformer, and single crystals have been grown via seeding chloroform solutions. They have been fully characterized by a combination of techniques including X-ray diffraction, Raman spectroscopy, and luminescence spectroscopy in the solid state. TP·I2F4 form I was found to undergo a single-crystal to single-crystal (SCSC) polymorphic phase transition induced by temperature (when cooled down to 100 K) leading to the new form TP·I2F4 form II, which is transformed back into the first structure when brought again at RT. This behavior was confirmed also by Raman spectroscopy. Upon cocrystallization and as a result of the external heavy atom effect, all crystalline materials exhibited bright room temperature phosphorescence clearly visible by the naked eye. The latter was almost exclusive for cocrystal TP·I2F4, whereas for TP·Br2F4 both fluorescence and phosphorescence were detected. In TP·Br2F4, the phosphorescence lifetime was on the order of 200 ms, and with the visual outcome of an orange phosphorescence lasting for a couple of seconds upon ceasing the excitation, that makes this compound classifiable as an ultralong organic phosphorescent (UOP) material. The results evidenced the role of the nature of the heavy atom in governing the phosphorescence output from organic cocrystals

    Low Molecular Weight Protein-tyrosine Phosphatase Tyrosine Phosphorylation by c-Src during Platelet-derived Growth Factor-induced Mitogenesis Correlates with Its Subcellular Targeting

    Get PDF
    The low molecular weight phosphotyrosine phosphatase (LMW-PTP) is an enzyme that is involved in the early events of platelet-derived growth factor (PDGF) receptor signal transduction. Our previous results have shown that LMW-PTP is able to specifically bind and dephosphorylate activated PDGF receptor, thus modulating PDGF-induced mitogenesis. In particular LMW-PTP is involved in pathways that regulate the transcription of the immediately early genes myc and fos in response to growth factor stimulation. In this study we have established that, in nontransformed NIH3T3 cells, LMW-PTP exists constitutively in cytosolic and cytoskeleton-associated localization and that, after PDGF stimulation, c-Src is able to bind and to phosphorylate LMW-PTP only in the cytoskeleton-associated fraction. As a consequence of its tyrosine phosphorylation, LMW-PTP significantly increases its catalytic activity. After PDGF stimulation these two LMW-PTP pools act on distinct substrates, contributing in different manners to the PDGF receptor signaling. The cytoplasmic LMW-PTP fraction exerts its well known action on activated PDGF receptor. On the other hand we have now demonstrated that the cytoskeleton-associated LMW-PTP acts specifically on a few not yet identified proteins that become tyrosine-phosphorylated in response to the PDGF receptor activation. Finally, these two LMW-PTP pools markedly differ in the timing of the processes in which they are involved. The cytoplasmic LMW-PTP pool exerts its action within a few minutes from PDGF receptor activation (short term action), while tyrosine phosphorylation of cytoskeleton-associated LMW-PTP lasts for more than 40 min (long term action). In conclusion LMW-PTP is a striking example of an enzyme that exerts different functions and undergoes different regulation in consequence of its subcellular localization

    Chemical-Physical Properties and Bioactivity of New Premixed Calcium Silicate-Bioceramic Root Canal Sealers

    Get PDF
    The aim of the study was to analyze the chemical-physical properties and bioactivity (apatite-forming ability) of three recently introduced premixed bioceramic root canal sealers containing varied amounts of different calcium silicates (CaSi): a dicalcium and tricalcium silicate (1-10% and 20-30%)-containing sealer with zirconium dioxide and tricalcium aluminate (CERASEAL); a tricalcium silicate (5-15%)-containing sealer with zirconium dioxide, dimethyl sulfoxide and lithium carbonate (AH PLUS BIOCERAMIC) and a dicalcium and tricalcium silicate (10% and 25%)-containing sealer with calcium aluminate, tricalcium aluminate and tantalite (NEOSEALER FLO). An epoxy resin-based sealer (AH PLUS) was used as control. The initial and final setting times, radiopacity, flowability, film thickness, open pore volume, water absorption, solubility, calcium release and alkalizing activity were tested. The nucleation of calcium phosphates and/or apatite after 28 days aging in Hanks balanced salt solution (HBSS) was evaluated by ESEM-EDX, vibrational IR and micro-Raman spectroscopy. The analyses showed for NeoSealer Flo and AH Plus the longest final setting times (1344 +/- 60 and 1300 +/- 60 min, respectively), while shorter times for AH Plus Bioceramic and Ceraseal (660 +/- 60 and 720 +/- 60 min, respectively). Radiopacity, flowability and film thickness complied with ISO 6876/12 for all tested materials. A significantly higher open pore volume was observed for NeoSealer Flo, AH Plus Bioceramic and Ceraseal when compared to AH Plus (p < 0.05), significantly higher values were observed for NeoSealer Flo and AH Plus Bioceramic (p < 0.05). Ceraseal and AH Plus revealed the lowest solubility. All CaSi-containing sealers released calcium and alkalized the soaking water. After 28 days immersion in HBSS, ESEM-EDX analyses revealed the formation of a mineral layer that covered the surface of all bioceramic sealers, with a lower detection of radiopacifiers (Zirconium for Ceraseal and AH Plus Bioceramic, Tantalum for NeoSealer Flo) and an increase in calcium, phosphorous and carbon. The calcium phosphate (CaP) layer was more evident on NeoSealer Flo and AH Plus Bioceramic. IR and micro-Raman revealed the formation of calcium carbonate on the surface of all set materials. A thin layer of a CaP phase was detected only on AH Plus Bioceramic and NeoSealer Flo. Ceraseal did not show CaP deposit despite its highest calcium release among all the tested CaSi-containing sealers. In conclusion, CaSi-containing sealers met the required chemical and physical standards and released biologically relevant ions. Slight/limited apatite nucleation was observed in relation to the high carbonation processes

    EphrinA1 repulsive response is regulated by an EphA2 tyrosine phosphatase

    Get PDF
    corecore