139 research outputs found

    Kidney: Succinate dehydrogenase-deficient renal cell carcinoma

    Get PDF

    Kidney: Chromophobe renal cell carcinoma

    Get PDF

    Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt's lymphoma

    Get PDF
    Numerical and structural centrosome abnormalities are detected in various human malignancies and have been implicated in the formation of multipolar mitoses, chromosome missegregation, and chromosomal instability. Despite this association between centrosome abnormalities and cancerous growth, a causative role of centrosome aberrations in generating chromosomal instability and aneuploidy has not been universally established. We report here excessive numerical and structural centrosome abnormalities in a malignant Burkitt's lymphoma harboring the characteristic t(8;14) chromosomal translocation. Using conventional karyotyping and fluorescence in situ hybridization (FISH), we detected no signs of ongoing numerical chromosome instability, although the tumor displayed sporadic multipolar metaphases. These findings demonstrate that centrosome abnormalities are not a universal surrogate marker for chromosomal instability in malignant tumors. Moreover, our results suggest a model in which additional cellular alterations may be required to promote centrosome-related mitotic defects in tumor cells

    Immunohistochemical Detection of MYC-driven Diffuse Large B-Cell Lymphomas

    Get PDF
    Diffuse large B cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease. A small subset of DLBCLs has translocations involving the MYC locus and an additional group has a molecular signature resembling Burkitt lymphoma (mBL). Presently, identification of such cases by morphology is unreliable and relies on cytogenetic or complex molecular methods such as gene transcriptional profiling. Herein, we describe an immunohistochemical (IHC) method for identifying DLBCLs with increased MYC protein expression. We tested 77 cases of DLBCL and identified 15 cases with high MYC protein expression (nuclear staining in >50% of tumor cells). All MYC translocation positive cases had increased MYC protein expression by this IHC assay. In addition, gene set enrichment analysis (GSEA) of the DLBCL transcriptional profiles revealed that tumors with increased MYC protein expression (regardless of underlying MYC translocation status) had coordinate upregulation of MYC target genes, providing molecular confirmation of the IHC results. We then generated a molecular classifier derived from the MYC IHC results in our cases and employed it to successfully classify mBLs from two previously reported independent case series, providing additional confirmation that the MYC IHC results identify clinically important subsets of DLBCLs. Lastly, we found that DLBCLs with high MYC protein expression had inferior overall survival when treated with R-CHOP. In conclusion, the IHC method described herein can be used to readily identify the biologically and clinically distinct cases of MYC-driven DLBCL, which represent a clinically significant subset of DLBCL cases due to their inferior overall survival

    Cytogenetics in the diagnosis of soft tumors

    No full text
    • …
    corecore