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Intra-tumoral genetic heterogeneity has been characterized across cancers by genome sequencing of bulk tumors, including

chronic lymphocytic leukemia (CLL). In order to more accurately identify subclones, define phylogenetic relationships, and

probe genotype–phenotype relationships, we developed methods for targeted mutation detection in DNA and RNA iso-

lated from thousands of single cells from five CLL samples. By clearly resolving phylogenic relationships, we uncovered mu-

tated LCP1 and WNK1 as novel CLL drivers, supported by functional evidence demonstrating their impact on CLL pathways.

Integrative analysis of somatic mutations with transcriptional states prompts the idea that convergent evolution generates

phenotypically similar cells in distinct genetic branches, thus creating a cohesive expression profile in each CLL sample de-

spite the presence of genetic heterogeneity. Our study highlights the potential for single-cell RNA-based targeted analysis

to sensitively determine transcriptional and mutational profiles of individual cancer cells, leading to increased understand-

ing of driving events in malignancy.

[Supplemental material is available for this article.]

The unbiased characterization of mutational landscapes by mas-
sively parallel sequencing of bulk tumor samples has been transfor-
mative across cancers (Garraway and Lander 2013). For chronic
lymphocytic leukemia (CLL), large-scale DNA-level characteriza-
tions have provided unexpected and clinically important insights
(Wang et al. 2011; Landau et al. 2015; Puente et al. 2015). These
studies not only have revealed the spectrum of key somatic muta-
tions in CLL but also have uncovered clonal heterogeneity within
individual samples that appear to impact clinical outcomes
(Landau et al. 2013; Jeromin et al. 2014; Nadeu et al. 2016).
While bulk DNA-level data provide a framework to begin charac-
terizing clonal heterogeneity, the cancer cell phenotype is un-
doubtedly controlled by both genetic composition and gene
expression and, hence, understanding this relationship mandates
integration of genetic with transcript information at the single-cell
level.

The recurrence of particular somatic single-nucleotide vari-
ants (sSNVs) in CLL implies positive selection and suggests that
these mutations affect key cellular pathways (Landau et al. 2015;
Puente et al. 2015). Inmany cases, though, the functional etiology
of these mutations is unknown. The emergence of single-cell tran-
scriptome sequencing for analyzing cancer highlights the poten-
tial to discover novel cellular subpopulations and states (Patel
et al. 2014; Tirosh et al. 2016a). These studies identified single cells
with large chromosomal arm–level alterations and detected aber-
rant expression of cellular pathways impacted by genes within
these deleted regions (Patel et al. 2014; Tirosh et al. 2016a). It
has not been clear, however, whether smaller focal alterations, in-
cluding sSNVs, can be reliably inferred and analyzed in an analo-
gous fashion. While these questions could be addressed in
simultaneously extracted DNA and RNA from single cells, these ef-
forts are still nascent (Dey et al. 2015; Macaulay et al. 2015; Hou
et al. 2016).
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This study examines the relationship between subclonal ar-
chitecture and phenotype at the single-cell level in a series of
CLL samples previously characterized by bulk genomic sequencing
using three experimental approaches: targeted DNA, whole tran-
scriptome, and targeted RNA (Fig. 1A). Our targeted RNA-based
approach reliably detects subclonalmutations and enables recapit-
ulation of single-cell DNA information, including phylogenetic
structure. Integrative analysis to correlate genotype andphenotype
revealed phenotypic convergence between distinct subclones
and unexpectedly found drivers of CLL not evident through anal-

ysis of bulk samples.Overall, we demonstrate the ability to robustly
integrate DNA- and RNA-level information in order to dissect the
impact of somatic mutations on cellular phenotype.

Results

Establishing the precise subclonal architecture of CLL

Single-cell targeted DNA sequencing was used to define the clonal
structure for five CLL samples previously characterized by bulk

WES. The five specimens had clonal or
subclonal deletions corresponding to
recurrent CLL-associated copy number
alterations: del(13q) in four patients,
del(17p) in two, and del(11q) in three
(Table 1; Fig. 1B). The samples also
had known CLL driver mutations,
such as TP53 (CLL003, CLL146), ATM
(CLL005), and SF3B1 (CLL096, CLL032).
Our single-cell targeted DNA sequencing
approach comprised whole-genome am-
plification (WGA) from flow-sorted, via-
ble CD19+CD5+ single cells; multiplex
PCR to amplify segments containing
single-nucleotide alterations identified
by the bulk WES; and deep sequencing.

Primers were designed to generate
90 amplicons for sSNVs and 111 ampli-
cons for single-nucleotide polymor-
phisms (SNPs) in chromosomal regions
corresponding to somatic copy number
alterations (sCNAs). A median of 10
SNP sites (range, six to 17) was selected
for each focal sCNA. Low-depth whole-
genome sequencing of the WGA prod-
ucts from 96 single CLL005 cells con-
firmed even coverage across the genome
(Supplemental Fig. S1). Of 1152 cells an-
alyzed from the five samples, 86% (991
cells) passed the quality metric of suffi-
cient DNA quality (100 ng) after WGA.
For the amplicons, 89%were successfully
amplified from the single cells (Supple-
mental Tables S1, S2). Following se-
quencing of the amplicon libraries,
>85% of the reads aligned to target re-
gions, and there was a median depth of
5160 reads per target region (Supplemen-
tal Fig. S2).

In order to address the complication
of allelic dropout, a novel probabilistic
algorithm was developed that is robust
against bias fromWGA and allelic ampli-
fication (see Supplemental Methods,
Supplemental Fig. S3). This method
uses information from all sSNVs and
SNPs data to infer missing data in order
to determine allelic imbalance and
sCNAs. For all five samples, the propor-
tion of single cells harboring genetic al-
terations was highly concordant with
the cancer cell fraction (CCF) calls

Figure 1. Detection of somatic alterations and gene expression patterns in single CLL cells. (A)
Workflow of DNA and RNA analysis at the single-cell level. Viable leukemia cells from CLL patients
were flow sorted either into 96-well plates or processed initially as bulk populations. DNA (left) and
RNA (right) plate-based approaches were used for phylogeny reconstruction and integration of genotype
and phenotype, respectively. Bulk cells (middle) were applied to C1 integrated fluidic circuits (IFCs) for
single-cell capture and cDNA library generation (see Methods). Sequencing libraries were generated
and sequenced on an Illumina HiSeq system. (B) Number of single-cell DNA-based detection assays de-
signed (top) and the cancer cell fraction (CCF) of all the alterations (bottom panel) for five CLL samples.
Each point is an alteration with specific alterations indicated by colors as noted. (C) Correlation between
mutation and chromosomal abnormalities detected by single-cell DNA analysis and CCF inferred from
bulk tumor whole-exome sequencing (WES).

Single-cell analysis reveals cancer drivers in CLL
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inferred from bulk WES (r2 = 0.937) (Fig. 1C; Supplemental Table
S3) using ABSOLUTE (Carter et al. 2012; Landau et al. 2013), sug-
gesting that our single-cell DNA sequencing and sCNA inference
accurately characterizes overall genetic heterogeneity. To discover
the relationship between different subpopulations, we performed
clustering analysis and phylogenetic reconstruction. Four samples
exhibited branched evolution, with only CLL032 showing a linear
evolution structure. For CLL003, the majority of somatic muta-
tions were clonal, includingmutations in the putative CLL drivers
DDX3X and del(13q). One subclone of 130 cells harbored aMYH1
mutation. Within this subclone, a subset of 55 cells (35% of total
cells) had del(17p) (minimal deleted region contains TP53).
Separate from the MYH1 subclone, a set of 24 cells (16% of total)
had a TP53mutation. The relative proportions of these subpopula-
tions were confirmed using fluorescence in situ hybridization
(FISH) with probes specific for Chromosomes 13q and 17p (Fig.
2A). Thus, consistentwith convergent evolution, two separate sub-
clones with heterozygous mutations leading to reduced TP53 ex-
pression were evident, rather than homozygous inactivation of
TP53 within the same clone of cells.

ByWES,CLL146wasknowntohavea series of subclonal chro-
mosome abnormalities. Single-cell DNA results identified one
branchwith three sCNAs (del(6p), del(17p), and del(18p)) all within
one subcloneof 55 cells (40%), supportedby FISHanalysis (Fig. 2B).
A separate branch (60%) had a mutation in the critical kinase
domainofWNK1 (V430F). ForCLL005, although del(13q) is a com-
mon early event in CLL, this was clearly a subclonal event in this
patient, and co-occurred with del(11q) and a MTOR mutation
(Fig. 2C). These alterations were not present in a separate subclone
definedby amutation inLCP1. Copynumber variationwasnot an-
alyzed in CLL096, but the sSNV data defined four subclones, with
one having a known CLL driver SF3B1 mutation (Supplemental
Fig. S4A). In contrast, CLL032 demonstrated linear evolution
with clonal events, including del(11q), del(13q), and del(1q), and
with a subclonal SF3B1mutation (Supplemental Fig. S4B).

CLL single-cell transcriptome analysis reveals transcriptional

heterogeneity

Single-cell whole-transcriptome sequencing was performed for
four of the five CLL samples (up to 96 cells per sample). Of the
384 cells analyzed, 289 cells (75%) passed quality-control filtering.
A median of 3,781,092 reads (range, 664,548–6,889,700) was gen-
erated per cell, with a median of 2473 unique transcripts (range,
1741–4255) detected per cell (Supplemental Table S4).

In order to characterize transcriptional heterogeneity within
these samples, we applied pathway and gene set overdispersion

analysis (PAGODA) (Fan et al. 2016) to identify significant aspects
of coordinated variabilitywithin annotated pathways and correlat-
ed gene sets (Fig. 3A,B). As detailed in the Methods, PAGODA uses
error models and variance normalization (Supplemental Fig. S5A,
B) in order to accurately quantify biological variability in amanner
that is robust to drop-out, expression-magnitude dependence, and
other technical factors (Munsky et al. 2012; Brennecke et al. 2013;
Kharchenko et al. 2014). Over 8000 annotated pathways from the
Molecular Signatures Database (MSigDb) (Subramanian et al.
2005) were analyzed to identify significantly overdispersed path-
ways (P < 0.05) that were further clustered to reduce redundancy.
For each sample, two to four significant aspects of transcriptional
heterogeneity corresponded to cellular processes previously impli-
cated in CLL, such as cell cycle and immune signaling (Fig. 3A,B;
Supplemental Fig. S6A,B). Other processes not previously high-
lighted by mutational studies, such as antigen presentation, phos-
pholipid binding, and protein folding (Supplemental Table S5),
were also identified. Joint analysis of single cells from all four
CLL samples revealed significant aspects of transcriptional hetero-
geneity shared across all samples, such as mitochondrial and ribo-
somal processes (Supplemental Fig. S6C; Supplemental Table S5).

In order to connect genotype and phenotype, we attempted
to identify mutations in the single-cell RNA-seq data that would
define distinct subclonal branches based on the priorDNAanalysis
(i.e.,WNK1,MTOR, LCP1, PURG, and SF3B1). However, scarcity of
coverage at themutation sites of interest limited our ability to con-
fidently call mutations in the majority of cells (Fig 3A,B;
Supplemental Fig. S6A,B, bottom; Supplemental Table S4). Thus,
although single-cell RNA-seq identified clear transcriptional het-
erogeneity based on pathway-driven gene expression analysis,
these data could not be used to confidently resolve the genetic sub-
clone structure or to assess the correspondence of genetic structure
with the observed transcriptional heterogeneity.

Integrated single-cell targeted gene expression and mutation

detection is robust and sensitive

The sparseness of coverage in single-cell RNA-seq data prompted us
to develop a targeted RNA approach to assess transcript expression
profiles and mutational status in the same single cells. By leverag-
ing the Biomark microfluidic technology that has been success-
fully used for analysis of single-cell RNA expression (Guo et al.
2010, 2013; Buganim et al. 2012;Wills et al. 2013), we implement-
ed a two-stage RT-PCR amplification strategy (Fig. 1A) to include
mutation detection. In the first stage, multiplex preamplification
generated cDNA libraries from individual cells that contain both
targets for RNA quantification and segments encompassing

Table 1. Patient characteristics of CLL samples

Sample ID Age at dx (yrs)/gender
Months from

diagnosis to sample Prior treatment IGHV status Cytogenetic abnormalities
Genes with

putative driver

CLL005 55/Male 72 F, R, R-CVP Mutated del(13q), 73%; del(11q), 86% ATM
LCP1

CLL146 43/Female 8 None Unmutated del(17p), 15% TP53
WNK1

CLL032 50/Female 2 None Unmutated del(11q), 89%; del(13q), 24% SF3B1
CLL096 36/Male 104 FCR, FC Unmutated del(13q), 86%; del(11q), 20% SF3B1
CLL003 62/Male 81 FR, dasatinib Unmutated del(13q), 80%; del(17p), 28% TP53

All samples except CLL003 had both single-cell whole- and targeted-transcriptome analysis.
(FCR) Fludarabine, cyclophosphamide, rituximab; (F, R) single-agent fludarabine, rituximab; (IGHV) immunoglobulin heavy-chain variable region
genes.
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sSNVs or SNPs diagnostic for sCNAs. In the second stage, high-
throughput qPCR was performed on matched integrated fluidic
circuits (IFCs) using assays nested relative to the preamplification
primers. One IFC was used to quantify RNA expression; the sec-
ond, to detect single-nucleotide alterations.

This approachwas tested in sevenCLL samples, including the
five analyzed above. For RNA expression, qPCR assays for 96 genes
were used per cell. As an initial characterization, we assessed detec-
tion as a function of the number of cells analyzed, titrating from40
cells to single cells (Fig. 4A; Supplemental Fig. S7). As the cell num-
ber per sample decreases, the number of genes detected decreases
and the variation across replicate samples increases. Up to 384 sin-

gle cells from each of the seven CLL samples and from normal
CD19+ B cells were analyzed. Based on the expression of the house-
keeping genes ACTB and B2M, we detected robust expression in
1951 of 2112 cells (92.4%). Across these samples, the highly ex-
pressed genes in bulk RNA were consistently highly expressed in
single cells (Fig. 4B; Supplemental Fig. S7B). However, genes with
a lower expression in bulk RNA exhibited bimodal expression.
Many single cells showed high expression, while others exhibited
lower or undetected expression. Notably, for those genes with un-
detected expression in the bulk specimen, 3%had high expression
in a subset of single cells. Principal component analysis (PCA) (Fig.
4C) and hierarchical clustering (Supplemental Fig. S7A) discerned

Figure 2. Reconstruction of tumor phylogeny in CLL from single-cell DNA analysis. (A–C) Detection and clustering of somatic mutations and chromo-
somal deletions (rows) for single viable CD19+CD5+ cells (columns) from CLL003 (A), CLL146 (B), CLL005 (C; for analysis of CLL096 and CLL032, see
Supplemental Fig. S4A,B). (Left) Blue indicates the presence of mutations (sSNVs) or chromosomal deletion; beige, the absence of sSNVs; red, the absence
of chromosomal deletion. (Middle) Clonal architecture for CLL003, CLL146, and CLL005 derived from single-cell DNA analysis. (Right) FISH hybridization
(A,B) and karyotyping images (C) as validation of the single-cell chromosomal deletion analysis with percentage of positive FISH cells enumerated from 100
cells. Sensitivity of probes used in the study was confirmed by hybridization with PBMC from a normal donor (Supplemental Fig. S4C).
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expression heterogeneity across 354 single CLL cells and clearly
discriminated these cells from 174 normal B cells. The CLL cells
from two patients were also distinguished from each other.

In parallel, paired assays interrogating alternative alleles for
sSNVs and SNPs were used to analyze the same single cells.
These assays utilized qPCR detection with SuperSelective allele-
specific primers (Fig. 4D; Vargas et al. 2016). Testing on artificial
templates or bulk cDNA, the designs of the allele-specific primers
were refined to achieve a ΔCq delay of at least seven cycles for amu-
tant assay on wild-type template or a wild-type assay on mutant
template (Fig. 4D; Supplemental Fig. S7C). When this assay design
was applied to CLL samples, wild-type alleles were readily distin-
guished from mutant alleles. Mutant alleles were consistently ob-
served in the originating patient but not in unrelated CLLs or in
nonleukemic B cells (Fig. 4E,F).

Phylogeny reconstruction and inference of convergent evolution

from single-cell RNA data

Inclusion of SNP assays enabled detection of chromosomal dele-
tions in single cells because complete allelic imbalance at germline
heterozygous SNPs signifies the presence of a deletion. SNP assays
were chosen from highly expressed genes (mean counts, more
than 30 from single-cell RNA-seq) and within candidate deletion
regions identified from bulk WES data (Fig. 5A,B; Supplemental
Table S6). By use of allele-specific assays to detect sSNVs and
SNPs related to sCNAs in four of the five samples, the RNA-based
estimates of allele frequency from single cells were highly concor-
dant with single-cell, targeted DNA-based detection of somatic al-

terations, as well as with CCF inferred from bulk WES (Fig. 5C).
Through the combined RNA-based targeted analysis of sSNVs
and sCNAs, we could reconstruct phylogeny in a manner consis-
tent with our prior DNA-based analysis. The assessment of 316 sin-
gle cells from CLL005 confirmed the co-occurrence of deletions in
Chromosomes 11q and 13q and IFNAR2mutation in a subpopula-
tion of cells (cluster 1) that did not co-occur with expression of
mutated LCP1 (cluster 2) (Fig. 5D). As expected, single cells in-
ferred to harbor deletions consistently had lower expression of
genes within the putative deleted regions (Fig. 5E,F). PCA on the
expression of genes within the deletion regions separated the
two genetic subpopulations, confirming that our approach was
able to distinguish cells with and without deletions of interest
(Fig. 5G; Supplemental Fig. S4C).

Based on the targeted single-cell RNA annotations of the mu-
tation and deletion status of each cell, we tested if the transcrip-
tionally defined subpopulations mapped to the genetically
defined subclonal branches for CLL005 andCLL146. In both cases,
genes previously identified from the single-cell RNA-seq analysis
to be variable and driving aspects of transcriptional heterogeneity
do not exhibit significant expression differences between the two
genetic subpopulations (Supplemental Fig. S5C). PCA on the ex-
pression of driving aspect genes also did not distinguish cells in
the different subclonal branches (Fig. 5H). In addition, genes asso-
ciated with overexpression of wild-type or mutant LCP1 in
HEK293 and K562 cells were identified using RNA-seq (Supple-
mental Fig. S6D,E). We did not observe a correlation between ex-
pression of these genes and LCP1 mutation status in CLL005
single cells (data not shown). This lack of correspondence between

Figure 3. CLL transcriptional heterogeneity revealed by single-cell transcriptome sequencing. Pathway and gene set overdispersion analysis (PAGODA)
was used to identify transcriptionally defined subpopulations for CLL005 (A) and CLL146 (B) (for analysis of CLL096 and CLL032, see Supplemental Fig.
S6A,B). Based on gene sets defined by MSigDB annotations, significantly overdispersed pathways group cells into coherent and distinct aspects of tran-
scriptional heterogeneity. Aspect scores (Cell PC score) are oriented so that high values generally correspond to increased expression of associated
gene sets. Also shown are expression patterns of select genes driving each aspect of transcriptional heterogeneity along with their loading contributions
to the aspect scores (left). Mutation information inferred from single-cell transcriptome sequencing is also shown at the bottom. CCF for each mutation
derived from bulk tumor WES and the number of reads (log10 transformed) from single-cell transcriptome sequencing are also indicated.
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prominent aspects of transcriptional heterogeneity and subclonal
branches prompted us to consider that perhaps each sample has
phenotypically similar leukemic subpopulations despite different
genetic identities.

Mutated LCP1 and WNK1 have potential CLL driving function

Although the subclonal structures of CLL005 and CLL146 had
clear genetically defined subclonal branches, one prominent
branch lacked a recognizable driver alteration. Experiments were
performed to test the premise that knowledge of the phenotype
of one branch can informus about functions of previously unchar-
acterized somatic mutations in the other branch.

In CLL005, one subclonal branch had the known drivers del
(13q), which encompasses theMIR15-16 locus, whose knockdown

accelerates the cell cycle in a mouse model (Klein et al. 2010), and
del(11q), whose minimally deleted region includes the DNA dam-
age response gene ATM. The other branch had a truncating muta-
tion in LCP1, encoding the actin-binding L-plastin. Expressed in
normal cells of hematopoietic lineage and across malignant hu-
man cells of nonhematopoietic origin, LCP1 has been previously
associated with del(11q) in CLL (Aalto et al. 2001) and reported
to play a role in niche homing (Dubovsky et al. 2013). Because
of the phenotypes associated with focal deletions in Chromo-
somes 11 and 13, we tested if the LCP1 mutation could accelerate
cell proliferation or impact DNA damage sensing. Stable HEK293
cell lines that express either wild-type or truncated LCP1were gen-
erated (Fig. 6A,B). The expression of mutated LCP1 did not impact
rate of cell growth (Supplemental Fig. S8A) but did lead to an al-
tered DNA damage response. This was measured by comparing

Figure 4. Establishment of a targeted RNA-based approach to perform integrated, targeted, and multiplexed detection of somatic mutations and gene
expression in single cells. (A) Number of genes detected from 96 genes using cell numbers ranging from one to 40 cells per well by the targeted approach
illustrated in Figure 1A, right panel. (B) Correlation between gene expression derived from a bulk RNA-seq and single-cell targeted approach in CLL005
(analyses of other individual CLL samples and in aggregates in Supplemental Fig. S7). (C ) Gene expression of a set of 96 genes in single cells distinguishes
normal (CD19+) and CLL-B cells by principal component analysis (PCA). Single cells were derived from one normal healthy donor and two CLL patients. (D,
top) SuperSelective primer design (Vargas et al. 2016) was used for mutation detection. The primer contains a long 5′-anchor sequence that binds strongly
to template strands, a short 3′-foot sequence that includes an interrogating nucleotide complementary to the corresponding nucleotide in a mutant tem-
plate (but mismatches the corresponding nucleotide in a wild-type template), and a linking bridge sequence. (Bottom) Schema of a successful targeted
mutation detection assay, in which distinct paired assays (wild-type and mutant allele) were designed for detection of a single mutation. (E) Heat map
of seven patient-specific mutation detection assays (with seven matched wild-type assays) performed on cDNA derived from 20 single cells from normal
CD19+ B cells or two CLL-B cells, with detectionmeasured as the number of cycles to achieve the detection threshold (Cq). (F ) Examples formutation calls in
single cells with or without mutations LCP1 and WNK1. Cells were called wild-type (WT; blue), mutant (red), or unclear (gray).
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phosphorylated H2AX expression following gamma irradiation in
cells expressing mutant or wild-type LCP1 (Fig. 6B). As expected,
irradiation led to phosphorylation of the DNA damage sensor
and transducer ATM in cells expressing wild-type LCP1. In con-
trast, cells with truncated LCP1 exhibited weak phosphorylation
of ATM but strong activation of DNA-PK phosphorylation. Thus,
L-plastin encoded by LCP1 likely participates in the sensing and

transducing of DNA damage signals. Consistent with this idea, im-
munoprecipitation detected direct physical interaction between
ATM and wild-type LCP1, as well as the truncated LCP1 (Fig.
6C), irrespective of radiation exposure (Supplemental Fig. S8B,C).
Finally, LCP1-mutant cells had higher survival following exposure
to gamma-irradiation compared with wild-type LCP1-expressing
cells, even in the presence of ATM inhibitors (Fig. 6D). Altogether,

Figure 5. Integrated analysis of DNA- and RNA-level information by simultaneous detection ofmutation, deletion, and gene expression in single cells. (A)
Schema of deletion call based on expression of heterozygous SNPs. Dashed line indicates deleted region. A deletion was called when a cell expresses only
one allele in the deleted region while expressing similar levels of both alleles for SNPs outside the deleted region. (B) Examples for deletion calls in CLL005
single cells for subclonal deletions in Chromosomes 11 and 13. Each point represents a cell. Orange indicates cells with no detectable expression from the
deleted allele are inferred to harbor the deletion; blue, cells with expression from both alleles or the deleted allele are inferred to lack the deletion. (C )
Mutation and chromosomal deletion frequency detected from single-cell RNA from five CLL samples show high correlation with CCF (r2 = 0.921) and
with mutation frequency per single-cell DNA analysis (r2 = 0.923). (D) Mutation and chromosomal deletion detection in single-cell RNA from sample
CLL005 enables reconstruction of phylogeny. (E,F ) Genes within the chromosomal deletion regions exhibit significantly lower expression based on a
one-sided Wilcoxon rank-sum test in cells inferred to harbor the deletions (cluster 1; orange) compared with cells not harboring the deletions (cluster
2; blue). Housekeeping genes are not significantly differentially expressed among single cells from the two clusters. (G) PCA of single cells from CLL005
or CLL146 based on gene expression for genes within chromosomal deletion regions leads to separation of cells by genetic subpopulation. Linear discrim-
inant analysis achieves elevated ROC AUCs of 0.774 for CLL005 and 0.771 for CLL146. (H) PCA of single cells from CLL005 or CLL146 based on gene ex-
pression for genes driving aspects of transcriptional heterogeneity (23 genes for CLL005, 33 for CLL146) fails to separate cells by genetic subpopulation.
Linear discriminant analysis does not perform substantially better than random, achieving ROC AUC of 0.516 for CLL005 and 0.595 for CLL146.
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these results suggest that LCP1 mutation confers resistance to
DNA insult.

For CLL146, the WNK1-V403F mutation was present in a
subclone distinct from a subclone carryingmultiple chromosomal
aberrations (in 6p, 17p, and 18p). A member of the WNK subfam-
ily of serine/threonine protein kinases, WNK1 has known roles in
the regulation of osmotic stress, cell cycle progression, metabolic
tumor cell adaptation, and evasion of metastasis (Moniz and
Jordan 2010). Based on crystal structure, WNK1-V403F localizes
to the catalytic domain of WNK1 kinase and physically interacts
with its critical T-loop region (Fig. 6E). PolyPhen scoring (Adzhu-
bei et al. 2013) predicted a strong function-altering effect for this
amino acid substitution based on its position in the protein crystal
structure. This was confirmed by showing that the WNK1-V403F
mutation completely ablates catalytic activity of a recombinant
fragment of bacterially expressed WNK1 that encompasses the
kinase domain (Supplementary Fig. S9A). To explore the effect
of this mutation inmammalian cells, we knocked out endogenous
WNK1 in HEK293 cells and then introduced inducible expres-
sion of wild-type and mutant WNK1 (Supplemental Fig. S9B).
When these cells were exposed to osmolar stress followed by
WNK1 immunoprecipitation, drastically reduced kinase activity
was observed on the target OSR1 D164A, although the effects on
WNK1 signaling cascades were not obvious (likely due to compen-
sation of other WNK isoforms that are highly expressed in
HEK293 cells) (Supplemental Fig. S9C). Thus, it is not clear if

the effect of the mutation on the osmolar stress pathway contrib-
utes to a cancer phenotype. On the other hand, we observed a fast-
er transition from G1 to S phase in WNK1-V403F–mutant cells,
suggesting that the mutation favors cell proliferation and growth
(Fig. 6F).

Discussion

For a population of malignant cells to expand as a subclone, a
driver event is presumably present. Although large-scale sequenc-
ing studies have uncovered a spectrum of recurrently mutated
driver genes across diverse malignancies (Lawrence et al. 2013,
2014), it has been estimated that ∼10% of CLLs have no identifi-
able driver (Landau et al. 2015; Puente et al. 2015). This highlights
a lack of completeness in our catalog of driving events in cancer
and in our full understanding of biologic features underlying the
cancer process. Thus, a continued effort in identifying driver
events in CLL (and cancer in general) remains warranted. We pos-
ited that a detailed analysis of the genetic structure of CLL could
enable better identification of novel somatic mutations in CLL
and, in turn, understanding of their function.

The molecular study of tumors generally requires a discovery
phase to establish the breadth of heterogeneity. For the five CLL
patients studied here, the discovery of genetic heterogeneity was
provided by previously published bulk WES results. Although
some information about clonality can be inferred from bulk

Figure 6. Mutations in LCP1 and WNK1 increase cell fitness and favor cell growth and survival. (A) Schema of the nonsense mutation in LCP1 found in
CLL005. (B) LCP1-mutant cells have altered DNA response upon gamma-irradiation. HEK293 cells stably expressing wild-type, mutant, or control con-
structs were treated with 10 Gy. Levels of gamma-H2AX and phosphorylated forms of ATM, ATR, DNA-PK, and GAPDH were assessed using immunoblot.
(C) Both wild-type and mutant LCP1 physically interact with ATM protein. HEK293 cells stably expressing wild-type, mutant, or control constructs were
transiently transfected with an ATM-expressing construct (with N-terminal His tag). Forty-eight hours after transfection, cells were either treated or not
treated with irradiation. Immunoprecipitations were performed on protein lysates using anti-His beads or anti-GFP as well as isotype control antibodies
followed by immunoblot against GFP or ATM protein. Shown are immunoprecipitates from untreated cells. Irradiation does not change the physical as-
sociation between these proteins (Supplemental Fig. S8). (D) Cells with mutant LCP1 have greater overall survival after gamma-irradiation compared
with cells with wild-type LCP1 with or without ATM inhibitor treatment. The survival rate was calculated by normalization to each group of nonirradiated
cells using colony assays performed on six-well plates. Mean ± SD; n = 3. (E) Crystal structure of WNK1 kinase domain (PDB entry 4Q2A). Val403 is located
underneath the activation loop of WNK1. Mutation of Val403 to Phe potentially disrupts activation loop folding and affects kinase activity. (F) Cells with
mutant WNK1 demonstrate a faster progression fromG1 to S phase. HEK293 cells were induced to express either wild-type or mutantWNK1 for 48 h. After
synchronization by serumdeprivation for 24 h, cell cyclewas assessed by EdU assay 24 h after return to completemedia. Themean percentage of cells (±SD;
n = 3) in different phases of the cell cycle is shown.
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WES, it cannot be used to unambiguously determine subclonal
structure (Paguirigan et al. 2015). For this, we used targeted sin-
gle-cell DNA sequencing to detect sSNVs and sCNAs to reconstruct
phylogeny. Discovery of transcriptional heterogeneity was pro-
vided by single-cell RNA-seq and established key transcripts and
pathways that contribute to the phenotype of each particular
sample. Because the analytical power of genetics depends on the
association of phenotype with genotype, we intended to link the
transcriptional heterogeneity with underlying genetic alterations.
However, due to the sparseness of coverage in the single-cell
RNA-seq data, genotype/phenotype correlation was accomplished
by targeted RNA qPCR. The selection of targets for both the gene
expression assays and the sSNV and SNP assays depended on
abundance measurements from bulk and single-cell RNA-seq.
Surprisingly, subclones were detected that had no apparent driver
but did have a phenotype similar to subclones with known drivers.
By using the phenotypes of the subclones with known drivers as a
guide, functional studies indicated that mutations in LCP1 and
WNK1 may be drivers of CLL that have not previously been
identified.

The single-cell DNA analysis revealed high levels of genetic
complexity in each CLL, with branching subclones observed
more commonly than not. There was a strong concordance
between inferred CCF estimates from bulk analysis and the num-
ber of single cells comprising a genetically defined subclone. The
single-cell information made it possible to clearly distinguish
branched from linear tumor evolution. Even within this small co-
hort, however, we observed deviations from the trends observed at
the population level. For example, although bulk CLL sequencing
studies have delineated chromosomal aberrations such as del(13q)
as early clonal events (as in CLL003 and CLL032), we clearly iden-
tified CLL cells with sSNVs as earlier events than chromosomal de-
letions [i.e., CLL005 and CLL146 with clonal mutations in ATM
and TP53 and subclonal del(13q)]. These observations reinforce
the idea that there is a not a dogmatic order per se in acquiring
chromosomal changes before point mutations, or vice versa, in
CLL, consistent with the notion that heterogeneous evolutionary
trajectories can produce malignancy.

Single-cell RNA profiling, via qPCR (Guo et al. 2010, 2013;
Dalerba et al. 2011; Buganim et al. 2012; Wills et al. 2013) or se-
quencing (Shalek et al. 2013, 2014), has emerged as a powerful
technology for establishing cell state (Treutlein et al. 2014; Klein
et al. 2015; Zeisel et al. 2015). Our single-cell RNA-seq data clearly
delineated transcriptional states but could not be used to reliably
detect mutations. To provide one example, the clonal ATM muta-
tion in CLL005 was detected in only two of 96 single cells (2.1%)
using RNA-seq data due to coverage limitations. In contrast, we
could detect 203 of 288 single cells (70.0%)withATMmutation us-
ing targeted qPCR. Similarly, Tirosh et al. (2016b) found a particu-
lar CIC mutation in seven of 1056 single cells (0.66%) using RNA-
seq reads but improved sensitivity to 28 of 467 (3.9%) using a tar-
geted qPCR assay. Such large discrepancies in detection frequency
cannot be made up by merely sequencing deeper, without even
considering the prohibitive cost of sequencing hundreds of single
cells to great depth. Clearly, the targeted RNA-based approach we
described is a reliable, cost-effectivemethod for sSNVor SNP detec-
tion in single cells.

Thus, our strategy transitioned to the use of targeted RNA
analysis to determine genotype and phenotype in the same single
cell, with qPCR as the readout. Advantages of using qPCR rather
than targeted sequencing include simpler workflow, faster data
acquisition, and more facile data processing. RNA-based genotyp-

ing can improve sensitivity as transcript copy number is higher
than genomic copy number. This advantage is tempered by the
occurrence of random monoallelic expression (Deng et al. 2014;
Reinius and Sandberg 2015). Despite this complication, our
targeted qPCR analysis of single-cell RNA recapitulated the clonal
structures detected by targeted, single-cell DNA sequencing and
provided RNA profiles consistent with the data from single-cell
whole-transcriptome sequencing. The versatility of this microflui-
dics-based qPCR approach has been further demonstrated by its
use to associate alternative splicing with somatic mutations
(Wang et al. 2016).

Our single-cell analysis consistently revealed convergent evo-
lution as a driving force in CLL. At the genetic level, this was evi-
dent in the example of CLL003 wherein we observed del(17p)
and TP53 mutation present in distinct subclones, rather than as
co-occurring, such that the majority of cells were impacted by
TP53 inactivation. Likewise, at the transcriptional level, although
we observed expression heterogeneity within individual samples,
the overall phenotypic picture was one of expression coherence.
Within this framework, we delved deeper into examining the func-
tional effects of two candidate CLL drivers: LCP1 mutation
(CLL005) and WNK1 mutation (CLL146). Indeed, we found evi-
dence of mutation in LCP1 impacting the DNA damage response
and in WNK1 on cellular proliferation.

Intra-tumoral heterogeneity at multiple levels (DNA, RNA,
epigenetics, protein) provides the fuel for tumor evolution, which
forms the basis of disease progression, treatment response, relapse,
and metastasis (Burrell et al. 2013; Mazor et al. 2016; Turajlic and
Swanton 2016). Distinct genetic or epigenetic subclonesmay com-
pete or collaborate for better fitness in response to microenvi-
ronmental or developmental changes (Tirosh et al. 2016b). Our
observation that distinct subclones within the same CLL sample
had similar transcriptome profiles suggests multiple levels of het-
erogeneity contribute to phenotype, consistent with other pub-
lished findings (Tirosh et al. 2016b). Although our study is
limited to only five CLL samples, our findings are in line with ac-
cumulating evidence across cancers. For example, a recent pan-
cancer analysis ofmore than 1100whole exomes from12 different
types of solid tumors has shown intra-tumoral genetic heterogene-
ity to exist in all tumor types examined and is linked to poor prog-
nosis (Andor et al. 2016). Our study results are also consistent with
two recent analyses of acute lymphocytic leukemia, in which
branched phylogenies were demonstrated as common (Potter
et al. 2013; Gawad et al. 2014). We anticipate integration of genet-
ic, epigenetic, transcriptome, and proteomic information from the
same single cell will ultimately provide the path for unraveling the
complexity of tumor heterogeneity.

Methods

Patient samples

CLL-B and normal B cells were collected frompatients and healthy
adult volunteers enrolled on clinical research protocols at the
Dana-Farber/Harvard Cancer Center (DF/HCC), approved by the
DF/HCC Human Subjects Protection Committee. Heparinized
blood was collected, and peripheral blood mononuclear cells
(PBMCs) were isolated by Ficoll/Hypaque density-gradient centri-
fugation, cryopreserved with 10% DMSO, and stored in vapor-
phase liquid nitrogen until the time of analysis. Informed consent
on DFCI IRB-approved protocols for genomic sequencing of pa-
tients’ samples was obtained prior to the initiation of sequencing
studies.
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Processing of normal B and CLL-B samples to single cells

Cryopreserved peripheral blood CLL samples were thawed and
stained with anti-CD19 FITC and anti-CD5 PE antibodies
(Beckman Coulter). 7-AAD (Invitrogen) was added before FACS
as a viability control. Live single or multiple CD19+CD5+ tumor
cells were flow sorted directly into 96-well plates with either 5 µL
of phosphate-buffered saline (for DNA analysis) or 5 µL of a lysis
buffer (for RNA analysis) consisting of 10 mM Tris-HCl (pH 8.0);
0.1 mM EDTA; 0.5% NP-40 (Thermo Scientific), and 0.1 U/µL
SUPERase-In (Life Technologies). Following sorting, each plate of
cells was gently vortexed, quickly spun down at 1500 rpm, and
flash frozen on dry ice. To minimize the in vitro exposure time
for the single cells, the time from cell thawing to flow-sorting
was standardized to be within 90 min.

Targeted mutation detection from DNA of single cells

Genomic DNA amplification from plates of single cells was carried
out using a REPLI-g amplification (WGA) kit (Qiagen) (Zhang et al.
2015). WGA DNA yield was determined by picogreen quantifica-
tion (Life Technologies). DNA samples (40 ng) were processed us-
ing targeted multiplex PCR assays with sample-specific primers
that were designed based on WES data (GeneRead, Qiagen).
WES, SNP array information, and RNA-seq of the bulk tumor sam-
ples from patients have been previously reported and data depos-
ited in dbGaP (phs000435.v2.p1). Multiplex PCR was performed
for 22 cycles following the manufacturer’s suggested conditions.
Sequencing libraries were generated using the Qiagen GeneRead
library preparation protocol following the manufacturer’s recom-
mended conditions. The resulting libraries were quantified
(Library Quantification, Kapa Biosystems), pooled, and sequenced
on an MiSeq instrument using a 300 cycle v2 kit (MiSeq reagent
kit, Illumina). For mutation analysis related to single-cell DNA tar-
geted PCR data, please refer to the Supplemental Methods.

Single-cell transcriptome sequencing and analysis

Single-cell CLL RNA libraries were generated from viable
CD19+CD5+ tumor cells obtained by flow cytometry. Bulk cells
were adjusted to 250 cells/µL and applied to the C1 system for sin-
gle-cell capture with a 5–10 micron IFC (capture rate >80%)
(Fluidigm). In the C1, whole-transcriptome amplification (WTA)
was performed with the SMARTer kit (Clontech), and the product
was converted to Illumina sequencing libraries using Nextera XT
(Illumina). RNA-seq was performed on a HiSeq instrument
(Illumina). Reads were aligned to the human reference genome
(hg19) using TopHat v1.4 (Trapnell et al. 2009) with GENCODE
v12 gene annotations.

Quality control was performed using Picard (http://broad
institute.github.io/picard/index.html). Rarely expressed genes (de-
tected in fewer than four cells) were removed prior to SCDEmodel
fitting. Poor cells or empty wells (estimated library size <1 × 106,
mode mapping quality = 0, passed filter aligned bases <1.5 × 108)
were removedprior tomodel fitting. PAGODAwasperformedusing
the SCDE package (v1.99.1) (see the Supplemental Methods; Fan
et al. 2016). We filtered 14,024 annotated pathways from
MSigDB (major collections GO [C5v4], manually curated [C2v4],
and oncogenic [C6v4]) to pathway gene sets with greater than 10
and less than 100 genes, resulting in 8437 final gene sets used.

Single-cell targeted mutation, gene expression, and chromosomal

deletion analysis

Integrated detection of somatic mutations, SNPs within regions of
chromosomal deletion, and gene expression in the same single cell

was performed on a Biomark HD instrument (Fluidigm) (Livak
et al. 2013; Vargas et al. 2016). cDNA was generated using reverse
transcription master mix (100-6299, Fluidigm), and preamplifica-
tionwas performedwith PreAmpmastermix (100-5744, Fluidigm)
and 10× preamplification primer mix (500 nM each primer). For
gene expression, allele-specific mutation and SNP detection,
qPCR was performed using 96.96 dynamic array IFCs (Fluidigm)
as previously described (Livak et al. 2013; Burger et al. 2016).
Data were analyzed with the Fluidigm real-time PCR analysis soft-
ware using the linear (derivative) baseline correction method and
the auto (global) Ct threshold method. The Cq values determined
were exported, and data were processed as the Cq threshold (set
to 28) minus the experimental Cq values. The transformation
yields values equivalent to a log2 transformation of sequencing
read count. For more details on primer design, cDNA generation,
and preamplification conditions, please see the Supplemental
Methods.

Mutation and deletion calling from RNA targeted analysis

Mutation calling relied on detection of significant levels ofmutant
allele expression above the expected background level. We did not
differentiate between homozygous and heterozygous mutants.
Because the primers for mutant and wild-type allele assays differed
by only one nucleotide, increased expression of the wild-type al-
lele leads to a nonzero background of mutant allele detection
(“cross-talk”). To determine the expected background level of
mutant allele detection as a function of wild-type allele detection,
we used negative controls (i.e., cells known not to have the muta-
tion of interest) and applied linear regression to model the expect-
ed degree of cross-talk. The details of this process are in the
Supplemental Methods. A similar logic was applied to heterozy-
gous SNPs within chromosomal regions affected by deletion.

Linking gene expression with genetic branches

To establish genetic branches, we applied hierarchical clustering
with Ward.D linkage and Jaccard distance metric to the confident
calls for relevant mutations and deletions. The resulting tree was
cut into two primary branches to establish the two expected genet-
ic branches. Association of genetic branch with gene expression
was performed by binning cells into classes based on the inferred
genetic branch, either cluster 1 or cluster 2. Then the distribution
of gene expression levels was directly compared between the two
classes. A two-sidedWilcoxon rank-sum test was used to assess sta-
tistical significance. Linear discriminant analysis, with perfor-
mance quantification by ROC AUC, was also used to assess the
extent to which the two classes could be distinguished by the first
two principal components with PCA.

Functional evaluation of LCP1 and WNK1 mutation

Full-length LCP1 construct in pCMV6-AC-GFP vector was pur-
chased (OriGene Technologies). Mutant LCP1 plasmid was gener-
ated by PCR amplification and subcloned at the AscI/MluI site in
pCMV6-AC-GFP vector. Stable HEK293 cell lines expressing wild-
type and mutant LCP1 were generated by transfection of these
constructs and cultured in the presence of G418 (0.6 mg/mL) to
maintain GFP positivity of >90%. DNA damage response and cell
survival in relation to expression of wild-type and mutant LCP1
was assessed by immunoblot and colony assay, respectively.
Interaction of LCP1 and ATMprotein was assessed by immunopre-
cipitation using cell lysate generated from HEK293 cell lines that
were transiently transfected with ATM-expressing construct (N-
terminal His tag, gift from Dr. Brendan Price). The antibodies
used in the study are detailed in the Supplemental Methods.
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Functional effects of WNK1 mutation were evaluated in
HEK293 cells that had inducible expression of either wild-type or
mutant WNK1 without endogenous WNK1 expression. Genera-
tion of theWNK1 knockout cell line and inducible lines is detailed
in the Supplemental Methods. WNK1 kinase activity and its acti-
vation of downstream signaling in relation to osmotic stress were
assessed by immunoblot. Cell cycle in the cells with inducible
WNK1 protein expression was profiled with the Click-iT Edu assay
(Thermo Fisher Scientific). Detailed experimental information is
provided in the Supplemental Methods.

Statistical analysis

The data in Figure 6F were analyzed using an unpaired two-tailed
Student’s t-test. A P-value <0.05 was considered significant.

Data access

The single-cell RNA sequencing, targeted mutation detection, as
well as gene expression data have been submitted to NCBI’s
Database of Genotypes and Phenotypes (dbGaP; https://www.
ncbi.nlm.nih.gov/gap) under study number phs001372.v1.p1.
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