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Abstract

Many of the exciting new developments in solid tumor molecular cytogenetics impact classical and molecular
pathology. Fluorescence in situ hybridization to identify specific DNA target sequences in nuclei of non-dividing
cells in solid neoplasms has contributed to the integration of molecular cytogenetics into cytology in spite of the
remarkable promiscuity of cancer genes. Indeed, although it is a low-throughput assay, fluorescence in situ
hybridization enables the direct disclosure and localization of genetic markers in single nuclei. Gene fusions are
among the most prominent genetic alterations in cancer, providing markers that may be determinant in needle
biopsies that are negative or suspicious for malignancy, and may contribute to the correct classification of the
tumors. In view of the expanding use of fluorescence in situ hybridization in cytology, future challenges include
automated sample evaluation and the specification of common criteria for interpreting and reporting results.
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Background
Various types of genetic alterations, as well as epigenetic
phenomena, have been identified and are now considered
important in the classification, prognosis, and treatment
of cancer. Correlations between genomic instability and
carcinogenesis have been extensively investigated, leading
to the recognition of an increasing number of genetic
abnormalities as a tumor driving force. Currently, several
molecular approaches are available to investigate tumor
cell pathobiology at different levels (chromosome,
gene, gene expression). The predominant approaches
include immunohistochemistry, fluorescence in situ
hybridization (FISH), polymerase chain reaction, array-
based and omics-based techniques [1-5]. The integra-
tion of results obtained using these platforms has been
invaluable in clarifying genetic alterations associated
with cancer and in interpreting the key role of the im-
paired signaling pathways. Gene gains and losses and
gene disruptions by chromosome translocation, in-
version, or deletion have been recognized as playing a
pathogenetic role in many cancers. These exciting new
developments in solid tumor molecular cytogenetics impact
classical and molecular pathology, and an increasing
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number of chromosome markers have been integrated into
World Health Organization tumor classifications [6]. Some
of these markers are also relevant to selection of therapies
targeting the protein products of gene fusions. In this sce-
nario the impact of testing gene alterations by interphase
FISH in material from needle biopsies and organic fluids
has rapidly increased.
Promiscuity: a false dilemma?
The identification of a specific translocation in solid tu-
mors dates back to 1983 when the t(11;22)(q24;q12) in
Ewing’s sarcoma was first described [7]. It took nine
years before the underlying gene fusion, EWS/FLI1 [8]
(today named EWSR1/FLI1), was discovered. The EWS/
FLI1 fusion was found to be closely associated with this
type of sarcoma, and was thought to play a causal role
in initiating the neoplastic process. Subsequent observa-
tions of variant translocations and the resulting EWSR1
fusions with different partner genes in the same tumor
entity disclosed the tip of an iceberg, paving the way for
discovering the phenomenon of gene promiscuity in
cancer. Indeed, the molecular cytogenetics of Ewing’s
sarcoma family tumors (so called ESFT) and subsequently
of other histologically unrelated soft tissue tumors, and fi-
nally of tumors arising in tissues of distinct embryological
origin, demonstrated the ubiquitous involvement of the
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PARTNER of EWSR1 TUMOR
ZNF384 Acute leukemia
ATF1, CREB1 Angoimatoid fibrous histiocytoma
ATF1, CREB1 Clear cell sa.
ATF1, CREB1 Clear cell sarcoma-like tu. GI tract
WT1 Desmoplastic small round cell tu.
NR4A Extrascheletal myxoid condrosarcoma
EIAF, ERG, ETV1, FLI1, FEV, NFATC2, PATZ1, SMARCA5, SP, ZNF278 Ewing sa.
ATF1 Hyalinising clear cell ca. salivary gland
CREB3L1 Low grade fibromyxoid sa.
ATF1 Malignant melanoma
YY1 Mesothelioma
POU5F1 Mucoepidermoid ca.a salivary gland
PBX1, POU5F1, ZNF44, ATF1 Myoepithelioma soft tissue
DDIT3 Myxoid liposarcoma
ATF1,CREB1 Primary pulmonary mixoid sa.
POU5F1 Skin hydroadenoma
CREB3L1 Sclerosing epitheliod fibrosarcoma
Epithelial lineage; Hematological lineage; Mesenchymal lineage; Mesenchymal and Epithelial lineage; ca. = carcinoma; sa. = sarcoma; tu. = tumor

Figure 1 Promiscuity of the EWSR1 gene in malignancy.

PARTNER of ALK TUMOR
ALO17, ATC, MYH9. MSN, NPM1, RNF213, TFG, TPM3 Anaplastic large cell lymphoma
ELM4 Breast cancer
EML4 Colon cancer
A2M Fetal lung interstitial tu.
ATC, CARS, CLT1, TPM3, TPM4, RANPB2, SEC31A Inflammatory myofibroblastic tu.
VCL Medullary kidney ca.
RANBP2 Myeloproliferative disorders
ELM4, C2orf44, HIP1, K1F5B, TGF, TRP, ROS1 Non-small cell lung ca.
TPM4 Oesophageal squamous cell ca.
FN1 Ovarian stromal sa.
TPM3 Systemic Histiocytosis
CLTC, NPM1, SEC31A, SQSTM1 Subgroup DLBCL
EML4, STRN Thyroid ca.

PARTNER of BCOR TUMOR
RARA Acute leukemia
ZC3H7B Endometrial stromal sa.
CCNB3 Sarcoma Ewing-like

PARTNER of ETV6 TUMOR
ABL1, ACSL1, ACSL6, ARNT, CHIC2, JACK2, MN1, NCOA2, 
NTRK3, PAX5, PDGFRA, PDGFRB, RUNX1, TTL

Acute leukemia

NTRK3 Congenital mesoblastic lymphoma
NTRK3 Infantile fibrosarcoma
NTRK3 Secretory breast ca.
NTRK3 Secretory ca. of salivary gland
NTRK3 Thyroid ca.

PARTNER of FGFR (FGFR-Member) TUMOR
TACC3, BAIAP2L1(FGFR3) Bladder ca.
ERLIN2 (FGFR1); AFF3, CASP7, CCDC6 (FGFR2) Breast ca.
CEP110 (FGFR1) Mieoproliferative syndrome
BAG4 (FGFR1); BICC1, TACC3, CIT, KIAA1967(FGFR2) Non-small cell lung cancer
TACC1(FGFR1); TACC3(FGFR3) Glioblastoma
BICC1(FGFR2) Metastatic colangiocarcinoma
SLC45A3 (FGFR2) Prostate ca.
OFD1(FGFR2) Thyroid ca.
Epithelial lineage; Hematological lineage; Mesenchymal lineage; Neuroepithelial lineage; ca. = 
carcinoma; sa.= sarcoma; tu. = tumor

Figure 2 Promiscuity of the ALK, BCOR, ETV6, FGFR genes in malignancy.
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EWSR1 gene in a wide spectrum of cancers, from sarcoma
to carcinoma and to hematological malignancy (Figure 1).
It is now clear that most structural gene alterations medi-
ated by chromosome rearrangements (examples in
Figures 2 and 3) [9,10], drive malignancy in a variety of tu-
mors of different hystogenetic types. Nevertheless, this
evidence does not invalidate the role of gene fusions or
deregulated genes as diagnostic tools. Indeed, the accumu-
lated data prompted expansion of the understanding of
gene promiscuity. For example, it is now clear that the
EWSR1 gene fuses with several genes mainly encoding
transcriptional regulator factor families, resulting in de-
regulation of specific molecular pathways. These include
ETS, homeobox-genes, zinc finger, and leucine-zipper
transcription factor families. Disruption of these pathways
may influence the pathogenesis of specific tumor types
through a variety of activation mechanisms [11]. In spite
of promiscuity, searching for gene involved in chromo-
some alterations leading to illicit shuffling of coding or
regulatory sequences in cancer is becoming an invaluable
approach in cytological investigations as well.

Cytology and cytogenetics
Based on the above scenario, the relationship between
cytology and cytogenetics has become increasingly close,
and the use of cytogenetics as an ancillary supplemen-
tary tool in cytological diagnosis has been introduced in
the pathology sector. In particular, the leitmotif of the
union of cytology and cytogenetics [12] is the need for a
close collaboration between the two parts, since on one
PARTNER of NCOA2
ETV6, MYSTR3
PAX3
AHRR, GTF21
HEY1

PARTNER of PHF1
RARA
CCNB3
ZC3H7B

PARTNER of  RET
BCR, FGFR1OP
CCDC6, KIF5B, NCOA, CUX1
CCD6, ELKS, Golgas, HOOK3, NCOA4, KTN1, RF
PRKAR1A, TRIM24, TRIM27, TRIM33

PARTNER of TFE3
ASPSCR1
YAP1
RREB1
PSF
ASPSCR1, PRCC, PSF, NonO, CLTC
Epithelial lineage; Hematological lineage; Mesench
= tumor

Figure 3 Promiscuity of the NCOA2, PHF1, RET, TFE3 genes in maligna
hand asking for a FISH test implies being aware of the
rearrangement to be investigated (Figure 4), and on the
other the cytogenetic result needs to be interpreted in
the context of the cytological (and possibly clinical) ob-
servations. In addition, a FISH test is often used as a
confirmatory tool since a negative result is not inform-
ative, both because unknown alterations cannot be ex-
cluded and the availability of tumor cells in cytological
preparations may be limited.
Considering the introduction of systematic genomic

testing for some tumors (such as lung and breast cancer)
[13,14], the consequent need for a correct evaluation of
ratio value in the presence of genetic heterogeneity [15],
and the growing demand for FISH tests in fine needle
aspirations and organic fluids, two main challenges for
the future can be foreseen: the implementation of auto-
mated FISH evaluation and the specification of common
criteria for interpreting and reporting FISH results in as
many tumor types as possible. A significant impediment
to evaluating the ever increasing numbers of clinical
FISH tests requested is imposed by the labor intensive
nature of the assay, as each test requires scoring nume-
rous interphase nuclei by double blind observation. Au-
tomated FISH, with strictly established parameters for
standardization, could partly overcome these issues,
although automation has yet to be perfected [16]. Spe-
cific recommendations and guidelines for FISH on
tumors have been established within ACMG (American
College of Medical Genetics and Genomics) [17] and
E.C.A (European Cytogeneticists Association) [18]. On
TUMOR
Acute leukemia
Alveolar rabdomyosarcoma
Angiofibroma
Chondrosarcoma

TUMOR
Acute promyelocytic leukemia
Ewing sarcoma-like
Endometrial stromal sa.

TUMOR
Chronic myelomonocytic leukemia
Non-small cell lung cancer

G9, PCM1, Thyroid papillary ca.

TUMOR
Alveolar soft part sa.
Epithelioid haemangioepithelioma
Inflammatory myofibroblastic tu.
Perivascular epithelioid cell tu.
Xp11-renal cell ca.

ymal lineage; ca. = carcinoma; sa.= sarcoma; tu. 

ncy.



Figure 4 Example of FISH in a cytological preparation. A
cytological preparation from thyroid fine needle aspiration was
simultaneously hybridized with RET (labeled with Spectrum Aqua/
Spectrum Red) and PPARg (labeled with Spectrum Green/Spectrum
Gold respectively) split-apart probes. Broken RET is revealed by the
split-apart centromeric aqua and telomeric red (arrowheads) probes.
Contiguous dual-color signals indicate intact genes. Nuclei are
counterstained with DAPI.
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the other hand, common objective interpretation criteria
for FISH on cytological preparations, as well as quality
control and quality assurance policies, remain limited
[13,14], and require an extraordinary cooperative effort
and interaction between cytogeneticists and cytologists. It
would be desirable to convene expert advisory panels from
scientific societies of clinical cytogeneticists and patholo-
gists to establish evaluation criteria for the various tumors,
based on expertise and a review of published literature, with
a view to establishing common shared recommendations.
Conclusions
Many of the exciting new developments of molecular
cytogenetics are having a profound impact on classical
and molecular cytology. The growing demand for cyto-
logical FISH tests highlights the need for the specifica-
tion of common criteria for interpreting and reporting
FISH results, for quality control and quality assurance
policies, and for possible implementation of automated
FISH evaluation.

Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
PC and RV participated in commentary design and wrote the manuscript.
They read and approved the final manuscript.
Acknowledgements
We wish to express our gratitude to Daniela V Frau for providing us with
Figure 4. Manuscript preparation was funded by Fondazione Banco di
Sardegna, grant prot No 17741 and POR Sardegna-FSE 2007–2013.

Received: 12 May 2014 Accepted: 30 July 2014
Published: 22 August 2014

References
1. Cai WW, Mao JH, Chow CW, Damani S, Balmain A, Bradley A: Genome-wide

detection of chromosomal imbalances in tumors using BAC microarrays.
Nat Biotechnol 2002, 20:393–396.

2. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L,
Barrette T, Palanisamy N, Chinnaiyan AM: Transcriptome sequencing to
detect gene fusions in cancer. Nature 2009, 458:97–101.

3. Hanash S, Taguchi A: The grand challenge to decipher the cancer
proteome. Nat Rev Cancer 2010, 10:652–660.

4. Mainini V, Pagni F, Garancini M, Giardini V, De Sio G, Cusi C, Arosio C,
Roversi G, Chinello C, Caria P, Vanni R, Magni F: An alternative approach
in endocrine pathology research: MALDI-IMS in Papillary Thyroid
Carcinoma. Endocr Pathol 2013, 24:250–253.

5. Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD,
Handal BA, Rahimi H, Reddy NG, Barkoh BA, Mishra BM, Paladugu AV,
Manekia JH, Kalhor N, Chowdhuri SR, Staerkel GA, Medeiros LJ, Luthra R,
Patel KP: Next-generation sequencing-based multi-gene mutation
profiling of solid tumors using fine needle aspiration samples:
promises and challenges for routine clinical diagnostics. Mod Pathol 2014,
27:314–327.

6. Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (Eds): World Health
Organization classification of tumours of soft tissue and bone. 4th edition.
Lyon: IARC Press; 2013.

7. Turc-Carel C, Philip I, Berger MP, Philip T, Lenoir G: Chromosomal
translocation (11; 22) in cell lines of Ewing’s sarcoma. C R Seances Acad
Sci III 1983, 296:1101–1103.

8. Zucman J, Delattre O, Desmaze C, Plougastel B, Joubert I, Melot T, Peter M,
De Jong P, Rouleau G, Aurias A, Thomas G: Cloning and characterization
of the Ewing’s sarcoma and peripheral neuroepithelioma t(11;22)
translocation breakpoints. Gene Chromosome Canc 1992, 5:271–277.

9. ChimerDB 2.0-a knowledgebase for fusion genes updated. In
[http://biome.ewha.ac.kr:8080/FusionGene/Search.jsp]

10. COSMIC: Catalogue Of Somatic Mutations In Cancer. In [http://cancer.
sanger.ac.uk/cancergenome/projects/cosmic/]

11. Cantile M, Marra L, Franco R, Ascierto P, Liguori G, De Chiara A, Botti G:
Molecular detection and targeting of EWSR1 fusion transcripts in soft
tissue tumors. Med Oncol 2013, 30:412.

12. Dal Cin P, Qian X, Cibas ES: The marriage of Cytology and Cytogenetics.
Cancer Cytopathol 2013, 121:279–290.

13. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins
RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M: Molecular
testing guideline for selection of lung cancer patients for EGFR and ALK
tyrosine kinase inhibitors. Guideline from the College of American
Pathologists, International Association for the Study of Lung Cancer,
and Association for Molecular Pathology. Arch Pathol Lab Med 2013,
137:828–860.

14. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH,
Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB,
Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes
DF: Recommendations for human epidermal growth factor receptor 2
testing in breast cancer: American Society of Clinical Oncology/College
of American Pathologists clinical practice guideline update. Arch Pathol
Lab Med 2014, 138:241–256.

15. Bernasconi B, Chiaravalli AM, Finzi G, Milani K, Tibiletti MG: Genetic
heterogeneity in HER2 testing may influence therapy eligibility. Breast
Cancer Res Treat 2012, 133:161–168.

16. Pajor G, Kajtár B, Pajor L, Alpár D: State-of-the-art FISHing: automated
analysis of cytogenetic aberrations in interphase nuclei. Cytometry 2012,
81:649–963.

17. Mascarello JT, Hirsch B, Kearney HM, Ketterling RP, Olson SB, Quigley DI,
Rao KW, Tepperberg JH, Tsuchiya KD, Wiktor AE: Working Group of the
American College of Medical Genetics Laboratory Quality Assurance
Committee. Section E9 of the American College of Medical Genetics

http://biome.ewha.ac.kr:8080/FusionGene/Search.jsp
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/


Caria and Vanni Molecular Cytogenetics 2014, 7:56 Page 5 of 5
http://www.molecularcytogenetics.org/content/7/1/56
technical standards and guidelines: fluorescence in situ hybridization.
Genet Med 2011, 13:667–675.

18. Hasting R, Bown N, Tibiletti MG, Debiec-Rychter M, Vanni R, Espinet B,
van Roy N, Roberts P, van den Berg-de-Ruiter E, Bernheim A, Ylstra B,
Schoumans J, Chatters S, Zemanova Z, Stevens-Kroef M, Simons A, Heim S,
Salido M, Betts DR: Guidelines for Cytogenetic Investigations in Tumours.
E.C.A Newsletter 2014, 34:7–18. http://e-c-a.eu.

doi:10.1186/s13039-014-0056-9
Cite this article as: Caria and Vanni: FISH molecular testing in cytological
preparations from solid tumors. Molecular Cytogenetics 2014 7:56.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://e-c-a.eu

	Abstract
	Background
	Promiscuity: a false dilemma?
	Cytology and cytogenetics

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

