4 research outputs found

    Incidence and prevalence of drug-resistant epilepsy : a systematic review and meta-analysis

    Full text link
    Objective To evaluate the incidence and prevalence of drug-resistant epilepsy (DRE) as well as its predictors and correlates, we conducted a systematic review and meta-analysis of observational studies. Methods Our protocol was registered with PROSPERO, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Meta-analysis of Observational Studies in Epidemiology reporting standards were followed. We searched MEDLINE, Embase, and Web of Science. We used a double arcsine transformation and random-effects models to perform our meta-analyses. We performed random-effects meta-regressions using study-level data. Results Our search strategy identified 10,794 abstracts. Of these, 103 articles met our eligibility criteria. There was high interstudy heterogeneity and risk of bias. The cumulative incidence of DRE was 25.0% (95% confidence interval [CI]: 16.8–34.3) in child studies but 14.6% (95% CI: 8.8–21.6) in adult/mixed age studies. The prevalence of DRE was 13.7% (95% CI: 9.2–19.0) in population/community-based populations but 36.3% (95% CI: 30.4–42.4) in clinic-based cohorts. Meta-regression confirmed that the prevalence of DRE was higher in clinic-based populations and in focal epilepsy. Multiple predictors and correlates of DRE were identified. The most reported of these were having a neurologic deficit, an abnormal EEG, and symptomatic epilepsy. The most reported genetic predictors of DRE were polymorphisms of the ABCB1 gene. Conclusions Our observations provide a basis for estimating the incidence and prevalence of DRE, which vary between populations. We identified numerous putative DRE predictors and correlates. These findings are important to plan epilepsy services, including epilepsy surgery, a crucial treatment option for people with disabling seizures and DRE

    Non-contrast CT markers of intracerebral hematoma expansion : a reliability study

    Full text link
    Objectives: We evaluated whether clinicians agree in the detection of non-contrast CT markers of intracerebral hemorrhage (ICH) expansion. Methods: From our local dataset, we randomly sampled 60 patients diagnosed with spontaneous ICH. Fifteen physicians and trainees (Stroke Neurology, Interventional and Diagnostic Neuroradiology) were trained to identify six density (Barras density, black hole, blend, hypodensity, fluid level, swirl) and three shape (Barras shape, island, satellite) expansion markers, using standardized definitions. Thirteen raters performed a second assessment. Inter and intra-rater agreement were measured using Gwet’s AC1, with a coefficient > 0.60 indicating substantial to almost perfect agreement. Results: Almost perfect inter-rater agreement was observed for the swirl (0.85, 95% CI: 0.78-0.90) and fluid level (0.84, 95% CI: 0.76-0.90) markers, while the hypodensity (0.67, 95% CI: 0.56-0.76) and blend (0.62, 95% CI: 0.51-0.71) markers showed substantial agreement. Inter-rater agreement was otherwise moderate, and comparable between density and shape markers. Inter-rater agreement was lower for the three markers that require the rater to identify one specific axial slice (Barras density, Barras shape, island: 0.46, 95% CI: 0.40-0.52 versus others: 0.60, 95% CI: 0.56-0.63). Inter-observer agreement did not differ when stratified for raters’ experience, hematoma location, volume or anticoagulation status. Intrarater agreement was substantial to almost perfect for all but the black hole marker. Conclusion: In a large sample of raters with different backgrounds and expertise levels, only four of nine non-contrast CT markers of ICH expansion showed substantial to almost perfect inter-rater agreement

    CD47 fusion protein targets CD172a+ cells in Crohn’s disease and dampens the production of IL-1β and TNF

    Get PDF
    In mice, the transfer of CD172a(+) (SIRP-α) dendritic cells (DCs) elicits T cell–driven colitis, whereas treatment with CD47-Fc protein, a CD172a-binding agent, confers protection. The aim of this study was to elucidate the nature and functional properties of human CD172a(+) DCs in chronic intestinal inflammation. Here, we show that CD172a(+)CD11c(+) cells accumulate in the mesenteric lymph nodes (mLNs) and inflamed intestinal mucosa in patients with Crohn’s disease (CD). These cells are distinct from resident DCs and may coexpress markers typically associated with monocyte-derived inflammatory DCs such as CD14 and/or DC-SIGN, E-Cadherin, and/or CX(3)CR1. Spontaneous IL-1β and TNF production by HLA-DR(+) cells in CD tissues is restricted to those expressing CD172a. An avidity-improved CD47 fusion protein (CD47-Var1) suppresses the release of a wide array of inflammatory cytokines by CD172a(+) cells, which may include HLA-DR(−)CD172a(+) neutrophils, in inflamed colonic explant cultures and impairs the ability of HLA-DR(+)CD172a(+) cells to activate memory Th17 but not Th1 responses in mLNs. In conclusion, targeting CD172a(+) cells may represent novel therapeutic perspectives for patients with CD

    CD47 fusion protein targets CD172a+ cells in Crohn's disease and dampens the production of IL-1β and TNF.

    Get PDF
    In mice, the transfer of CD172a(+) (SIRP-α) dendritic cells (DCs) elicits T cell-driven colitis, whereas treatment with CD47-Fc protein, a CD172a-binding agent, confers protection. The aim of this study was to elucidate the nature and functional properties of human CD172a(+) DCs in chronic intestinal inflammation. Here, we show that CD172a(+)CD11c(+) cells accumulate in the mesenteric lymph nodes (mLNs) and inflamed intestinal mucosa in patients with Crohn's disease (CD). These cells are distinct from resident DCs and may coexpress markers typically associated with monocyte-derived inflammatory DCs such as CD14 and/or DC-SIGN, E-Cadherin, and/or CX3CR1. Spontaneous IL-1β and TNF production by HLA-DR(+) cells in CD tissues is restricted to those expressing CD172a. An avidity-improved CD47 fusion protein (CD47-Var1) suppresses the release of a wide array of inflammatory cytokines by CD172a(+) cells, which may include HLA-DR(-)CD172a(+) neutrophils, in inflamed colonic explant cultures and impairs the ability of HLA-DR(+)CD172a(+) cells to activate memory Th17 but not Th1 responses in mLNs. In conclusion, targeting CD172a(+) cells may represent novel therapeutic perspectives for patients with CD.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore