4 research outputs found

    Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device

    Get PDF
    Electrode materials having high capacitance with outstanding stability are the critical issues for the development of flexible supercapacitors (SCs), which have recently received increasing attention. To meet these demands, coating of CeO2 nanoparticles have been performed onto MWCNTs by using facile chemical bath deposition (CBD) method. The formed CeO2/MWCNTs nanocomposite exhibits excellent electrochemical specific capacitance of 1215.7 F/g with 92.3% remarkable cyclic stability at 10000 cycles. Light-weight flexible symmetric solid-state supercapacitor (FSSC) device have been engineered by sandwiching PVA-LiClO4 gel between two CeO2/MWCNTs electrodes which exhibit an excellent supercapacitive performance owing to the integration of pseudocapacitive CeO2 nanoparticles onto electrochemical double layer capacitance (EDLC) behaved MWCNTs complex web-like structure. Remarkable specific capacitance of 486.5 F/g with much higher energy density of 85.7 Wh/kg shows the inherent potential of the fabricated device. Moreover, the low internal resistance adds exceptional stability along with unperturbed behavior even under high mechanical stress which can explore its applicability towards high-performance flexible supercapacitor for advanced portable electronic devices

    Enhanced field emission from ZnO nanoneedles on chemical vapour deposited diamond films

    No full text
    ZnO nanoneedles were coated on hot filament chemical vapour deposited diamond thin films to enhance the field emission properties of ZnO nanoneedles. The virgin diamond films and ZnO nanoneedles on diamond films were characterized using scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The field emission studies reveal that the ZnO nanoneedles coated on diamond film exhibit better emission characteristics, with minimum threshold field (required to draw a current density ~ 1 μA/cm2) as compared to ZnO needles on silicon and virgin diamond films. The better emission characteristic of ZnO nanoneedles on diamond film is attributed to the high field-enhancement factor resulting due to the combined effect of the ZnO nanoneedles and diamond film
    corecore