3,784 research outputs found

    Charge Kondo effect toward a non-Fermi-liquid fixed point in the orbitally degenerate exchange model

    Full text link
    We show that a Kondo-type model with an orbital degeneracy has a new non-Fermi-liquid fixed point. Near the fixed point the spin degrees of freedom are completely quenched, and the residual charge degrees of freedom lead to the multi-channel Kondo effect. Anomalous behavior appears in electric and thermal properties, but the magnetic susceptibility should show the local Fermi-liquid behavior. The non-Fermi-liquid fixed point becomes unstable against perturbations breaking the particle-hole symmetry. We derive these results using the third-order scaling for a spherically symmetric model with a fictitious spin. In contrast to the Coqblin-Schrieffer model, the present model respects different time-reversal properties of multipole operators.Comment: 4 pages, 2 eps figures, to appear in J. Phys. Soc. Jpn. 68 No.

    Transport properties of one-dimensional interacting fermions in aperiodic potentials

    Full text link
    Motivated by the existence of metal-insulator transition in one-dimensional non-interacting fermions in quasiperiodic and pseudorandom potentials, we studied interacting spinless fermion models using exact many-body Lanczos diagonalization techniques. Our main focus was to understand the effect of the fermion-fermion interaction on the transport properties of aperiodic systems. We calculated the ground state energy and the Kohn charge stiffness Dc. Our numerical results indicate that there exists a region in the interaction strength parameter space where the system may behave differently from the metallic and insulating phases. This intermediate phase may be characterized by a power law scaling of the charge stiffness constant in contrast to the localized phase where Dc scales exponentially with the size of the system.Comment: 11 pages LaTex document with 5 eps figures. Uses revtex style file

    Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments

    Full text link
    We present NanoImprint lithography experiments and modeling of thin films of block copolymers (BCP). The NanoImprint lithography is used to align perpendicularly lamellar phases, over distances much larger than the natural lamellar periodicity. The modeling relies on self-consistent field calculations done in two- and three-dimensions. We get a good agreement with the NanoImprint lithography setups. We find that, at thermodynamical equilibrium, the ordered BCP lamellae are much better aligned than when the films are deposited on uniform planar surfaces

    A Poincare-Covariant Parton Cascade Model for Ultrarelativistic Heavy-Ion Reactions

    Get PDF
    We present a new cascade-type microscopic simulation of nucleus-nucleus collisions at RHIC energies. The basic elements are partons (quarks and gluons) moving in 8N-dimensional phase space according to Poincare-covariant dynamics. The parton-parton scattering cross sections used in the model are computed within perturbative QCD in the tree-level approximation. The Q^2 dependence of the structure functions is included by an implementation of the DGLAP mechanism suitable for a cascade, so that the number of partons is not static, but varies in space and time as the collision of two nuclei evolves. The resulting parton distributions are presented, and meaningful comparisons with experimental data are discussed.Comment: 30 pages. 11 figures. Submitted to Phys.Rev.

    A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds

    Get PDF
    We investigate the Brown-York stress tensor for curvature-squared theories. This requires a generalized Gibbons-Hawking term in order to establish a well-posed variational principle, which is achieved in a universal way by reducing the number of derivatives through the introduction of an auxiliary tensor field. We examine the boundary stress tensor thus defined for the special case of `massive gravity' in three dimensions, which augments the Einstein-Hilbert term by a particular curvature-squared term. It is shown that one obtains finite results for physical parameters on AdS upon adding a `boundary cosmological constant' as a counterterm, which vanishes at the so-called chiral point. We derive known and new results, like the value of the central charges or the mass of black hole solutions, thereby confirming our prescription for the computation of the stress tensor. Finally, we inspect recently constructed Lifshitz vacua and a new black hole solution that is asymptotically Lifshitz, and we propose a novel and covariant counterterm for this case.Comment: 25 pages, 1 figure; v2: minor corrections, references added, to appear in JHE

    Exploring Spirituality in Teaching Within a Christian School Context Through Collaborative Action Research

    Get PDF
    This article reports on a collaborative action research project conducted in New Zealand, during 2012, exploring spirituality in teaching within a Christian school context. The experienced primary school teacher participant chose to take action around the issue of personal fear and insecurity which were believed to be hindering professional growth and relationships. Through self-directed inquiry, critical reflective journaling, Bible study, fellowship and prayer with trusted friends, the teacher experienced a renewed sense of peace and freedom in Christ. This personal transformation was believed to be influential on subsequent professional practice, assisting the teacher to become more relational, responsive and compassionate. The findings provide a rich description of the participant’s spirituality, the lived reality of a person’s spiritual life. This report will be of interest to teachers, teacher-leaders and teacher-educators who desire to explore Christian spirituality through practitioner-led inquiry

    Study of relativistic nuclear collisions at AGS energies from p+Be to Au+Au with hadronic cascade model

    Get PDF
    A hadronic cascade model based on resonances and strings is used to study mass dependence of relativistic nuclear collisions from p+Be to Au+Au at AGS energies (\sim 10\AGeV) systematically. Hadron transverse momentum and rapidity distributions obtained with both cascade calculations and Glauber type calculations are compared with experimental data to perform detailed discussion about the importance of rescattering among hadrons. We find good agreement with the experimental data without any change of model parameters with the cascade model. It is found that rescattering is of importance both for the explanation of high transverse momentum tail and for the multiplicity of produced particles.Comment: 27 pages, 30 figure

    Crossover between Fermi Liquid and non-Fermi Liquid in Orbitally Degenerate Kondo Systems

    Full text link
    Entanglement of spin and orbital Kondo effect is investigated on the basis of a Kondo-type exchange model with twofold orbital degeneracy. By using Wilson's numerical renormalization-group method, we examine dynamical and thermal properties respecting the difference in time-reversal property of multipole operators. In the presence of particle-hole symmetry, the model has a new non-Fermi-liquid fixed point with a fractional entropy. The spectral intensity of the quadrupole susceptibility diverges in the zero-frequency limit, while the dipole susceptibility shows a Fermi-liquid-like behavior. This is understood by mapping to the two-channel Kondo model, in which the dipole moment is mapped onto the operators with the scaling dimension Δm=1\Delta_m=1, while the quadrupole moment onto the operators with another scaling dimension Δe=1/2\Delta_e=1/2. Even for a fairly particle-hole asymmetric case with the Fermi-liquid ground state, the non-Fermi-liquid behavior has significant influences in electric and thermal properties.Comment: 7 pages, 9 figures, to appear in J. Phys Soc. Jpn. Vol. 68 No. 12, title changed and some corrections mad

    Low-lying S-wave and P-wave Dibaryons in a Nodal Structure Analysis

    Get PDF
    The dibaryon states as six-quark clusters of exotic QCD states are investigated in this paper. With the inherent nodal surface structure analysis, the wave functions of the six-quark clusters (in another word, the dibaryons) are classified. The contribution of the hidden color channels are discussed. The quantum numbers of the low-lying dibaryon states are obtained. The States [ΩΩ](0,0+)[\Omega\Omega]_{(0,0^{+})}, [ΩΩ](0,2)[\Omega\Omega]_{(0,2^{-})}, [ΞΩ](1/2,0+)[\Xi^{*}\Omega]_{(1/2,0^{+})}, [ΣΣ](0,4)[\Sigma^{*}\Sigma^{*}]_{(0,4^{-})} and the hidden color channel states with the same quantum numbers are proposed to be the candidates of dibaryons, which may be observed in experiments.Comment: 29 pages, 2 figure

    Medium effects in high energy heavy-ion collisions

    Get PDF
    The change of hadron properties in dense matter based on various theoretical approaches are reviewed. Incorporating these medium effects in the relativistic transport model, which treats consistently the change of hadron masses and energies in dense matter via the scalar and vector fields, heavy-ion collisions at energies available from SIS/GSI, AGS/BNL, and SPS/CERN are studied. This model is seen to provide satisfactory explanations for the observed enhancement of kaon, antikaon, and antiproton yields as well as soft pions in the transverse direction from the SIS experiments. In the AGS heavy-ion experiments, it can account for the enhanced K+/π+K^+/\pi^+ ratio, the difference in the slope parameters of the K+K^+ and KK^- transverse kinetic energy spectra, and the lower apparent temperature of antiprotons than that of protons. This model also provides possible explanations for the observed enhancement of low-mass dileptons, phi mesons, and antilambdas in heavy-ion collisions at SPS energies. Furthermore, the change of hadron properties in hot dense matter leads to new signatures of the quark-gluon plasma to hadronic matter transition in future ultrarelativistic heavy-ion collisions at RHIC/BNL.Comment: RevTeX, 65 pages, including 25 postscript figures, invited topical review for Journal of Physics G: Nuclear and Particle Physic
    corecore