61 research outputs found

    Water invasion performance of complex fracture-vuggy gas reservoirs based on classification modeling

    Get PDF
       The complexity of the pore structure, spatial development, fractures, and pore distribution of fractured-vuggy carbonate reservoirs influences the water invasion dynamics of gas reservoirs, which is crucial in the dynamic research of strongly heterogeneous reservoirs. In this study, the collocation relationship of pore-vuggy fractures is described by the quantitative characterization of their attribute parameters. The discrete fracture network model is used to match and construct the fractures in different modes. The distribution classification method is used to model three-dimensional geological reservoirs in terms of their geometric and attribute characteristics. Bottom-water and edge-water gas reservoirs are constructed separately using numerical simulation, and the dynamic characteristics of water invasion are described. The results show that the proposed method is suitable for the geological modeling of fractured-vuggy gas reservoirs with strong heterogeneity and complexity. The modeling accuracy is improved because the gas reservoir heterogeneity and water invasion’s dynamic characteristics can be described accurately. Six stages of water invasion are identified from the numerical simulation of water invasion. This method provides theoretical guidance for the study of heterogeneous gas reservoirs with water.Cited as: Han, X., Tan, X., Li, X., Pang, Y., Zhang, L. Water invasion performance of complex fracture-vuggy gas reservoirs based on classification modeling. Advances in Geo-Energy Research, 2021, 5(2): 222-232, doi: 10.46690/ager.2021.02.1

    Electrochemical ozone sensors : A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring

    Get PDF
    Ozone (O3) measurements are a critical component of air quality management and many atmospheric chemistry laboratory experiments. Conventional ozone monitoring devices based on UV absorption are relatively cumbersome and expensive, and have a relative high power consumption that limits their use to fixed sites. In this study electrochemical O3 sensors (OXB421, Alphasense) were used in a miniaturised O3 measurement device combined with LabJack and Labview data acquisition (DAQ). The device required a power supply of 5 V direct current (VDC) with a total power consumption of approximately 5 W. Total weight was less than 0.5 kg, low enough for portable in situ field deployment. The electrochemical O3 sensors produced a voltage signal positively proportional to O3 concentrations over the range of 5 ppb–10 ppm. There was excellent agreement between the performances of two O3 sensors with a good linear coefficient (R2 = 0.9995). The influences of relative humidity (RH) and gas sample flow rate on sensor calibrations and sensitivities have been investigated separately. Coincident calibration curves indicate that sensor performances were almost identical even at different RHs and flow rates after a re-zeroing process to offset the sensor baseline drifts. Rapid RH changes (∼20%/min) generate significant and instant changes in sensor signal, and the sensors consistently take up to 40 min to recover their original values after such a rapid RH change. In contrast, slow RH changes (∼0.1%/min) had little effect on sensor response. To test the performance of the miniaturised O3 device for real-world applications, the O3 sensors were employed for (i) laboratory experiments to measure O3 loss by seawater uptake and (ii) air quality monitoring over an 18-day period. It was found that ozone uptake by seawater was linear to the volume of linoleic acid on a sea surface microlayer and the calculated uptake coefficients based on sensor measurements were close to those from previous studies. For the 18-day period of air quality monitoring the corrected data from the O3 sensor was in a good agreement with those obtained by reference UV O3 analyser with an r2 of 0.83 (n = 8502). The novelty of this study is that the electrochemical O3 sensor was comprehensively investigated in O3 measurements in both laboratory and ambient air quality monitoring and it can to be a miniaturised alternative for conventional O3 monitoring devices due to its low cost, low power-consumption, portable and simple-conduction properties

    The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring

    Get PDF
    The analytical performance of low cost air pollution sensors under real-world conditions is a key factor that will influence their future uses and adoption. In this study five different electrochemical gas sensors (O3, SO2, CO, NO, NO2) are tested for their performance when challenged with cross interferences of water vapour and other gaseous co-pollutants. These experiments were conducted under both controlled laboratory conditions and during ambient air monitoring in urban background air at a site in York, UK. Signal outputs for O3, SO2 and CO showed a positive linear dependence on relative humidity (RH). The output for the NO sensor showed a negative correlation. The output for the NO2 sensor showed no trend with RH. Potential co-pollutants (O3, SO2, CO, NO2, NO and CO2) were introduced under controlled conditions using gas standards and delivered to each sensor in series along with variable RH. A matrix of cross-interference sensitivities were established which could be used to correct sensor signals. Interference-corrected sensor responses were compared against reference observations over an 18-day period. Once cross interferences had been removed the corrected 5 min averaging data for O3, CO, NO and NO2 sensors showed good agreement with the reference techniques with r2 values of 0.89, 0.76, 0.72, and 0.69, respectively. The SO2 sensor could not be evaluated in ambient air since ambient SO2 was below the sensor limit of detection

    The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring

    Get PDF
    The analytical performance of low cost air pollution sensors under real-world conditions is a key factor that will influence their future uses and adoption. In this study five different electrochemical gas sensors (O3, SO2, CO, NO, NO2) are tested for their performance when challenged with cross interferences of water vapour and other gaseous co-pollutants. These experiments were conducted under both controlled laboratory conditions and during ambient air monitoring in urban background air at a site in York, UK. Signal outputs for O3, SO2 and CO showed a positive linear dependence on relative humidity (RH). The output for the NO sensor showed a negative correlation. The output for the NO2 sensor showed no trend with RH. Potential co-pollutants (O3, SO2, CO, NO2, NO and CO2) were introduced under controlled conditions using gas standards and delivered to each sensor in series along with variable RH. A matrix of cross-interference sensitivities were established which could be used to correct sensor signals. Interference-corrected sensor responses were compared against reference observations over an 18-day period. Once cross interferences had been removed the corrected 5 min averaging data for O3, CO, NO and NO2 sensors showed good agreement with the reference techniques with r2 values of 0.89, 0.76, 0.72, and 0.69, respectively. The SO2 sensor could not be evaluated in ambient air since ambient SO2 was below the sensor limit of detection

    Direct observation of the formation and stabilization of metallic nanoparticles on carbon supports

    Get PDF
    Direct formation of ultra-small nanoparticles on carbon supports by rapid high temperature synthesis method offers new opportunities for scalable nanomanufacturing and the synthesis of stable multi-elemental nanoparticles. However, the underlying mechanisms affecting the dispersion and stability of nanoparticles on the supports during high temperature processing remain enigmatic. In this work, we report the observation of metallic nanoparticles formation and stabilization on carbon supports through in situ Joule heating method. We find that the formation of metallic nanoparticles is associated with the simultaneous phase transition of amorphous carbon to a highly defective turbostratic graphite (T-graphite). Molecular dynamic (MD) simulations suggest that the defective T-graphite provide numerous nucleation sites for the nanoparticles to form. Furthermore, the nanoparticles partially intercalate and take root on edge planes, leading to high binding energy on support. This interaction between nanoparticles and T-graphite substrate strengthens the anchoring and provides excellent thermal stability to the nanoparticles. These findings provide mechanistic understanding of rapid high temperature synthesis of metal nanoparticles on carbon supports and the origin of their stability

    Risk factors for hypoxaemia following hip fracture surgery in elderly patients who recovered from COVID-19: a multicentre retrospective study

    Get PDF
    ObjectivesTo explore the risk factors associated with postoperative hypoxaemia in elderly patients who have recovered from coronavirus disease (COVID-19) and underwent hip fracture surgery in the short term.DesignMulticentre retrospective study.SettingThe study was performed in three first 3A-grade hospitals in China.ParticipantsA sequential sampling method was applied to select study participants. Medical records of 392 patients aged ≥65 years who had recovered from COVID-19 and underwent hip fracture surgery at three hospitals in China between 1 November, 2022, and 15 February, 2023, were reviewed.InterventionsPatients were assigned to hypoxaemia or non-hypoxaemia groups, according to whether hypoxaemia occurred after surgery. Univariate and multivariate logistic regression analyses were used to identify independent risk factors for postoperative hypoxaemia.ResultsThe incidence of postoperative hypoxaemia was 38.01%. Statistically significant differences were found between the two groups in terms of age, body mass index (BMI), American Society of Anesthesiologists (ASA) classification, presence of expectoration symptoms, preoperative hypoxaemia, chronic obstructive pulmonary disease, pulmonary inflammation, time between recovery from COVID-19 and surgery, anaesthetic mode, surgical procedure, intraoperative blood loss, intraoperative infusion, duration of surgery, and length of hospital stay (p < 0.05). Furthermore, patients with BMI ≥28.0 kg/m2, expectoration symptoms, presence of preoperative hypoxaemia, ASA classification III, time between recovery from COVID-19 and surgery ≤2 weeks, and general anaesthesia were potential risk factors for postoperative hypoxaemia.ConclusionObesity, expectoration symptoms, preoperative hypoxaemia, ASA classification III, time between recovery from COVID-19 and surgery ≤2 weeks, and general anaesthesia were potential risk factors for postoperative hypoxaemia in elderly patients who recovered from COVID-19 and underwent hip fracture surgery in the short term

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div

    Structural Efficiency Analysis of a Piston for Aviation Engines

    No full text
    The high-performance piston has a great impact on the performance parameters of the engine. The rapid design of a high-performance piston can shorten the research and development cycle and lower the experimental cost. At present, the piston design is mostly considered from a single factor, but it has not been comprehensively designed from multiple factors. Starting from the concept of structural efficiency, this paper defines the restrictive factors affecting engine performance parameters in piston design, puts forward an evaluation method of quantifying the benefit of piston design on engine performance parameters, and deduces the calculation model. The piston is designed and iterated many times to obtain the best two schemes. The two schemes are quantitatively compared through the above calculation model and verified by experiments. The results show that the structural efficiency of the piston in scheme 2 is 4.6% higher than that in scheme 1. The calculation method is applicable to the design of key engine components, which can shorten the research and development cycle, save the test costs, and greatly improve the R&amp;D efficiency

    Microstructure and Mechanical Properties of Fiber Laser Welding of Aluminum Alloy with Beam Oscillation

    No full text
    Laser welding with beam oscillation is applied to join aluminum alloy plates in butt configuration. The effects of beam oscillating patterns on the quality of welds are compared and analyzed. The results indicate that beam oscillation can improve the weld formation and microstructure of butt joints. The circular oscillating weld has the features of fine grain and uniformly dispersed dendrites in the strengthening phase, and the porosity inhibitory effect of circular oscillation is the most obvious. In addition, beam oscillation has few effects on the tensile strength of welds, but exerts an influence on the elongation of welds
    corecore