90 research outputs found

    Kernel mapping for mitigating nonlinear impairments in optical short-reach communications

    Get PDF
    Nonlinear impairments induced by the opto-electronic components are one of the fundamental performance-limiting factors in high-speed optical short-reach communications, significantly hindering capacity improvement. This paper proposes to employ a kernel mapping function to map the signals in a Hilbert space to its inner product in a reproducing kernel Hilbert space, which has been successfully demonstrated to mitigate nonlinear impairments in optical short-reach communication systems. The operation principle is derived. An intensity modulation/direct detection system with 1.5-mu m vertical cavity surface emitting laser and 10-km 7-core fiber achieving 540.68-Gbps (net-rate 505.31-Gbps) has been carried out. The experimental results reveal that the kernel mapping based schemes are able to realize comparable transmission performance as the Volterra filtering scheme even with a high order. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    High-speed PAM4-based Optical SDM Interconnects with Directly Modulated Long-wavelength VCSEL

    Full text link
    This paper reports the demonstration of high-speed PAM-4 transmission using a 1.5-{\mu}m single-mode vertical cavity surface emitting laser (SM-VCSEL) over multicore fiber with 7 cores over different distances. We have successfully generated up to 70 Gbaud 4-level pulse amplitude modulation (PAM-4) signals with a VCSEL in optical back-to-back, and transmitted 50 Gbaud PAM-4 signals over both 1-km dispersion-uncompensated and 10-km dispersion-compensated in each core, enabling a total data throughput of 700 Gbps over the 7-core fiber. Moreover, 56 Gbaud PAM-4 over 1-km has also been shown, whereby unfortunately not all cores provide the required 3.8 ×\times 10 −3^{-3} bit error rate (BER) for the 7% overhead-hard decision forward error correction (7% OH HDFEC). The limited bandwidth of the VCSEL and the adverse chromatic dispersion of the fiber are suppressed with pre-equalization based on accurate end-to-end channel characterizations. With a digital post-equalization, BER performance below the 7% OH-HDFEC limit is achieved over all cores. The demonstrated results show a great potential to realize high-capacity and compact short-reach optical interconnects for data centers.Comment: 7 pages, accepted to publication in 'Journal of Lightwave Technology (JLT

    Experimental Demonstration of 503.61-Gbit/s DMT over 10-km 7-Core Fiber with 1.5-\mu m SM-VCSEL for Optical Interconnects

    Get PDF
    We experimentally demonstrate a net-rate 503.61-Gbit/s discrete multitone (DMT) transmission over 10-km 7-core fiber with 1.5-\mu m single mode VCSEL, where low-complexity kernelrecursive-least-squares algorithm is employed for nonlinear channel equalization.Comment: 3 pages, 44th European Conference on Optical Communication (ECOC 2018), Rome, Italy, 201

    Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks

    Get PDF
    A BiCMOS chip-based real-time intensity modulation/direct detection spatial division multiplexing system is experimentally demonstrated for both optical interconnects. 100 Gbps/lambda/core electrical duobinary (EDB) transmission over 1 km 7-core multicore fiber (MCF) is carried out, achieving KP4 forward error correction (FEC) limit (BER < 2E-4). Using optical dispersion compensation, 7 x 100 Gbps/lambda/core transmission of both non-retunito-zero (NRZ) and EDB signals over 10 km MCF transmission is achieved with BER lower than 7% overhead hard-decision FEC limit (BER < 3.8E-3). The integrated low complexity transceiver IC and analog signal processing approach make such a system highly attractive for the high-speed intra-datacenter interconnects. (C) 2018 Optical Society of America under the terms oldie OSA open Access Publishing Agreement
    • …
    corecore