42 research outputs found

    Triazole-Based Compound as a Candidate To Develop Novel Medicines To Treat Toxoplasmosis

    Get PDF
    This article reports anti-Toxoplasma gondii activity of 3-(thiophen-2-yl)-1,2,4-triazole-5-thione. The compound displayed significant and reproducible antiparasitic effects at nontoxic concentrations for the host cells, with an experimentally determined 50% inhibitory concentration (IC50) at least 30 times better than that of the known chemotherapeutic agent sulfadiazine. Purine nucleoside phosphorylase was defined as the probable target for anti-Toxoplasma activity of the tested compound. These results provide the foundation for future work to develop a new class of medicines to better treat toxoplasmosis

    Influence of Association on Binding of Disaccharides to YKL-39 and hHyal-1 Enzymes

    Get PDF
    Disaccharide complexes have been shown experimentally to be useful for drug delivery or as an antifouling surface biofilm, and are promising drug-encapsulation and delivery candidates. Although such complexes are intended for medical applications, to date no studies at the molecular level have been devoted to the influence of complexation on the enzymatic decomposition of polysaccharides. A theoretical approach to this problem has been hampered by the lack of a suitable computational tool for binding such non-covalent complexes to enzymes. Herein, we combine quantum-mechanical calculations of disaccharides complexes with a nonstandard docking GaudiMM engine that can perform such a task. Our results on four different complexes show that they are mostly stabilized by electrostatic interactions and hydrogen bonds. This strong non-covalent stabilization demonstrates the studied complexes are some excellent candidates for self-assembly smart materials, useful for drug encapsulation and delivery. Their advantage lies also in their biocompatible and biodegradable character

    1,4-disubstituted thiosemicarbazide derivatives are potent inhibitors of toxoplasma gondii proliferation.

    Get PDF
    A series of 4-arylthiosemicarbazides substituted at the N1 position with a 5-membered heteroaryl ring was synthesized and evaluated in vitro for T. gondii inhibition proliferation and host cell cytotoxicity. At non-toxic concentrations for the host cells all studied compounds displayed excellent anti-parasitic effects when compared to sulfadiazine, indicating a high selectivity of their anti-T. gondii activity. The differences in bioactivity investigated by DFT calculations suggest that the inhibitory activity of 4-arylthiosemicarbazides towards T. gondii proliferation is connected with the electronic structure of the molecule. Further, these compounds were tested as potential antibacterial agents. No growth-inhibiting effect on any of the test microorganisms was observed for all the compounds, even at high concentrations

    Pharmacological and Structure-Activity Relationship Evaluation of 4-aryl-1-Diphenylacetyl(thio)semicarbazides

    Get PDF
    This article describes the synthesis of six 4-aryl-(thio)semicarbazides (series a and b) linked with diphenylacetyl moiety along with their pharmacological evaluation on the central nervous system in mice and computational studies, including conformational analysis and electrostatic properties. All thiosemicarbazides (series b) were found to exhibit strong antinociceptive activity in the behavioural model. Among them, compound 1-diphenylacetyl-4-(4-methylphenyl)thiosemicarbazide 1b was found to be the most potentan algesic agent, whose activity is connected with the opioid system. For compounds from series a significant anti-serotonergic effect, especially for compound 1-diphenylacetyl-4- (4-methoxyphenyl)semicarbazide 2b was observed. The computational studies strongly support the obtained results

    Cytotoxic effect and molecular docking of 4-ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazide—a novel topoisomerase II inhibitor

    Get PDF
    The preliminary cytotoxic effect of 4-ethoxycarbonylmethyl-1-(piperidin-4-ylcarbonyl)-thiosemicarbazide hydrochloride (1)—a potent topoisomerase II inhibitor—was measured using a MTT assay. It was found that the compound decreased the number of viable cells in both estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231breast cancer cells, with IC(50) values of 146 ± 2 and 132 ± 2 μM, respectively. To clarify the molecular basis of the inhibitory action of 1, molecular docking studies were carried out. The results suggest that 1 targets the ATP binding pocket. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00894-012-1679-6) contains supplementary material, which is available to authorized users

    Determination of the Primary Molecular Target of 1,2,4-Triazole-Ciprofloxacin Hybrids

    Get PDF
    We have synthesized and examined the antibacterial activity, toxicity and affinity towards bacterial type II topoisomerases of a series of 1,2,4-triazole-ciprofloxacin hybrids. A number of these compounds displayed enhanced activity against Gram-positive and Gram-negative bacteria when compared to ciprofloxacin. The toxic concentrations of the obtained derivatives, evaluated on HEK-293 cells using MTT assay, were much higher than concentrations required to produce antibacterial effect. Finally, the results of enzymatic studies showed that the analyzed compounds demonstrated other preferences as regards primary and secondary molecular targets than ciprofloxacin.This research was supported by the Ministry of Science and Higher Education under Iuventus Plus grant No. IP2014 037473. Tomasz Plech is a recipient of the Fellowship for Young Researchers with Outstanding Scientific Achievements from the Medical University of Lublin (Lublin, Poland)

    Lipophilicity Studies on Thiosemicarbazide Derivatives

    No full text
    The lipophilicity of two series of thiosemicarbazide derivatives was assessed by the RP-HPLC method with the RP-18 chromatographic column and the methanol–water mixture as the mobile phase. Distribution coefficients logPHPLC were compared to calculated values generated by commonly used AClogP software and quantum chemical calculations. The reliability of the predictions was evaluated using the correlation matrix and PCA. For 4-benzoylthiosemicarbazides, a high correlation between theoretical and experimental logP parameters was obtained using the XlogP3 algorithm, while for 4-aryl/(cyclohexyl)thiosemicarbazides, the XlogP2 parameter was strongly correlated with the experimentally obtained logP

    Assessment of Nonnucleoside Inhibitors Binding to HIV-1 Reverse Transcriptase Using HYDE Scoring

    No full text
    In this study, 48 inhibitors were docked to 107 allosteric centers of human immunodeficiency virus 1 (HIV-1) reverse transcriptase from the Protein Data Bank (PDB). Based on the average binding scores, quantitative structure-activity relationship (QSAR) equations were constructed in order to elucidate directions of further development in the design of inhibitors. Such developments, informed by structural data, must have a focus on activity against mutated forms of the enzyme, which are the cause of the emergence of multidrug-resistant viral strains. Docking studies employed the HYDE scoring function. Two types of QSARs have been considered: One based on topological descriptors and the other on structural fragments of the inhibitors. Both methods gave similar results, indicating substructures favoring binding to mutated forms of the enzyme
    corecore