110 research outputs found

    X-ray analysis of the accreting supermassive black hole in the radio galaxy PKS 2251+11

    Get PDF
    We investigate the dichotomy between jetted and non-jetted Active Galactic Nuclei (AGNs), focusing on the fundamental differences of these two classes in the accretion physics onto the central supermassive black hole (SMBH). Our aim is to study and constrain the structure, kinematics and physical state of the nuclear environment in the Broad Line Radio Galaxy (BLRG) PKS 2251+11. The high X-ray luminosity and the relative proximity make such AGN an ideal candidate for a detailed analysis of the accretion regions in radio galaxies. We performed a spectral and timing analysis of a \sim64 ks observation of PKS 2251+11 in the X-ray band with XMM-Newton. We modeled the spectrum considering an absorbed power law superimposed to a reflection component. We performed a time-resolved spectral analysis to search for variability of the X-ray flux and of the individual spectral components. We found that the power law has a photon index Γ=1.8±0.1\Gamma=1.8\pm 0.1, absorbed by an ionized partial covering medium with a column density NH=(10.1±0.8)×1023N_H=(10.1\pm 0.8) \times 10^{23} cm2^{-2}, a ionization parameter logξ=1.3±0.1\log{\xi}=1.3\pm 0.1 erg s1^{-1} cm and a covering factor f90%f\simeq90\%. Considering a density of the absorber typical of the Broad Line Region (BLR), its distance from the central SMBH is of the order of r0.1r\sim 0.1 pc. An Fe Kα\alpha emission line is found at 6.4 keV, whose intensity shows variability on time scales of hours. We derived that the reflecting material is located at a distance r600rsr\gtrsim600r_s, where rsr_s is the Schwarzschild radius. Concerning the X-ray properties, we found that PKS 2251+11 does not differ significantly from the non-jetted AGNs, confirming the validity of the unified model in describing the inner regions around the central SMBH, but the lack of information regarding the state of the very innermost disk and SMBH spin still leave unconstrained the origin of the jet

    The evolution of the warm absorber reveals a shocked outflow in the narrow line Seyfert 1 galaxy IRAS 17020+4544

    Get PDF
    We present the analysis of grating spectra of the Narrow Line Seyfert 1 Galaxy IRAS 17020+4544 observed by XMM-Newton in 2004 and 2014. In a previous work on these data, we reported the discovery of a multi-component ultra-fast outflow that is capable of producing feedback in the host galaxy. We also reported the presence of a slow, multi-phase warm absorber. In this follow-up paper, we confirm that this low velocity absorber can be modeled by four layers of ionized gas. When crossing our line-of-sight, this gas presents peculiar changes along the 10-yr time scale elapsed between the two observations obtained by XMM-Newton. While two of such components are almost stationary, the other two are found inflowing and outflowing with significant variations in velocity and ionization between 2004 and 2014. The luminosity and spectral shape of the central source remain practically unvaried. We propose that the presence of the fast wind and of the variable warm absorber can be interpreted in the framework of a `shocked outflow', where the peculiar variability pattern of the low-velocity components might arise from instabilities in the shocked gas.Comment: 16 pages, 1 figure, 2 tables, accepted by Ap

    The X-ray variability of Seyfert 1.8/1.9 galaxies

    Get PDF
    Seyfert 1.8/1.9 are sources showing weak broad H-alpha components in their optical spectra. We aim at testing whether Seyfert 1.8/1.9 have similar properties at UV and X-ray wavelengths to Seyfert 2. We use the 15 Seyfert 1.8/1.9 in the Veron Cetty and Veron catalogue with public data available from the Chandra and/or XMM-Newton archives at different dates, with timescales between observations ranging from days to years. Our results are homogeneously compared with a previous work using the same methodology applied to a sample of Seyfert 2 (Hernandez-Garcia et al. 2015). X-ray variability is found in all 15 nuclei over the aforementioned ranges of timescales. The main variability pattern is related to intrinsic changes in the sources, which are observed in ten nuclei. Changes in the column density are also frequent, as they are observed in six nuclei, and variations at soft energies, possibly related to scattered nuclear emission, are detected in six sources. X-ray intraday variations are detected in six out of the eight studied sources. Variations at UV frequencies are detected in seven out of nine sources. A comparison between the samples of Seyfert 1.8/1.9 and 2 shows that, even if the main variability pattern is due to intrinsic changes of the sources in the two families, these nuclei exhibit different variability properties in the UV and X-ray domains. In particular, variations in the broad X-ray band on short time-scales (days/weeks), and variations in the soft X-rays and UV on long time-scales (months/years) are detected in Seyfert 1.8/1.9 but not in Seyfert 2. Overall, we suggest that optically classified Seyfert 1.8/1.9 should be kept separated from Seyfert 2 galaxies in UV/X-ray studies of the obscured AGN population because their intrinsic properties might be different.Comment: Accepted for publication in A&A. arXiv admin note: text overlap with arXiv:1505.0116

    X-ray high-resolution spectroscopy reveals feedback in a Seyfert galaxy from an ultra fast wind with complex ionization and velocity structure

    Get PDF
    Winds outflowing from Active Galactic Nuclei (AGNs) may carry significant amount of mass and energy out to their host galaxies. In this paper we report the detection of a sub-relativistic outflow observed in the Narrow Line Seyfert 1 Galaxy IRAS17020+4544 as a series of absorption lines corresponding to at least 5 absorption components with an unprecedented wide range of associated column densities and ionization levels and velocities in the range of 23,000-33,000 km/s, detected at X-ray high spectral resolution (E/Delta E ~1000) with the ESA's observatory XMM-Newton. The charge states of the material constituting the wind clearly indicate a range of low to moderate ionization states in the outflowing gas and column densities significantly lower than observed in highly ionized ultra fast outflows. We estimate that at least one of the outflow components may carry sufficient energy to substantially suppress star formation, and heat the gas in the host galaxy. IRAS17020+4544 provides therefore an interesting example of feedback by a moderately luminous AGN hosted in a spiral galaxy, a case barely envisaged in most evolution models, which often predict that feedback processes take place in massive elliptical galaxies hosting luminous quasars in a post merger phase.Comment: 8 pages, 3 figures, to appear on ApJ Letter

    HST unveils a compact mildly relativistic Broad Line Region in the candidate true type 2 NGC 3147

    Get PDF
    NGC 3147 has been considered the best case of a true type 2 AGN: an unobscured AGN, based on the unabsorbed compact X-ray continuum, which lacks a broad line region (BLR). However, the very low luminosity of NGC 3147 implies a compact BLR, which produces very broad lines, hard to detect against the dominant background host galaxy. Narrow (0.1"x0.1") slit HST spectroscopy allowed us to exclude most of the host galaxy light, and revealed an Hα\alpha line with an extremely broad base (FWZI27000\sim27\,000 km s1^{-1}). The line profile shows a steep cutoff blue wing and an extended red wing, which match the signature of a mildly relativistic thin accretion disk line profile. It is indeed well fit with a nearly face on thin disk, at i23i\sim23^\circ, with an inner radius at 77±1577\pm15 rg_g, which matches the prediction of 6214+1862^{+18}_{-14} rg_g from the RBLRL1/2R_{\rm BLR} \sim L^{1/2} relation. This result questions the very existence of true type 2 AGN. Moreover, the detection of a thin disk, which extends below 100 rg_g in an L/LEdd104L/L_{\rm Edd}\sim10^{-4} system, contradicts the current view of the accretion flow configuration at extremely low accretion rates.Comment: 6 pages, 3 figures, accepted for publication in MNRAS Letter

    The extreme super-eddington NLS1 RX J0134.2-4258 – II. A weak-line Seyfert linking to the weak-line quasar

    Get PDF
    ABSTRACT RX J0134.2-4258 is one of the most super-Eddington narrow-line Seyfert 1 (NLS1) galaxies, on which we conducted a monitoring campaign from radio to X-rays. In this paper, we present a detailed analysis of its optical/UV spectra and broad-band spectral energy distribution. Our study shows that the preferred black hole mass of RX J0134.2-4258 is MBH ∼ 2 × 107 M⊙, giving a mass accretion rate through the outer disc of m˙out20\dot{m}_{\rm out} \sim 20 (assuming zero spin), compared to the observed luminosity ratio Lbol/LEdd ∼ 6. This reduction in radiative efficiency is expected for super-Eddington flows, as power can be lost via advection and/or disc winds. We find that the optical/UV lines of RX J0134.2-4258 resemble those from weak-like quasars (WLQs), as it has notably weak C iv and N v emission lines. It also has drastic X-ray variability, again similar to that recently observed in some other WLQs. However, WLQs have systematically higher masses (≳108 M⊙), and lower Eddington ratios (m˙out1\dot{m}_{\rm out} \sim 1) than RX J0134.2-4258. We compare instead to the most extreme NLS1s, with similarly large m˙out\dot{m}_{\rm out} but smaller masses. These show similarly large reductions in radiative efficiency but their UV lines are not similarly wind dominated. We suggest a new category of weak-line Seyfert galaxies to describe sources like RX J0134.2-4258, and interpret its (so far unique) properties in a model, where the lower disc temperature in the higher mass black holes leads to the UV-line-driving mechanism, which enhances the super-Eddington radiation-pressure-driven wind.</jats:p
    corecore