50 research outputs found
Using the Barthel Index and modified Rankin Scale as outcome measures for stroke rehabilitation trials; A comparison of minimum sample size requirements
Objectives
Underpowered trials risk inaccurate results. Recruitment to stroke rehabilitation randomised controlled trials (RCTs) is often a challenge. Statistical simulations offer an important opportunity to explore the adequacy of sample sizes in the context of specific outcome measures. We aimed to examine and compare the adequacy of stroke rehabilitation RCT sample sizes using the Barthel Index (BI) or modified Rankin Scale (mRS) as primary outcomes.
Methods
We conducted computer simulations using typical experimental event rates (EER) and control event rates (CER) based on individual participant data (IPD) from stroke rehabilitation RCTs. Event rates are the proportion of participants who experienced clinically relevant improvements in the RCT experimental and control groups. We examined minimum sample size requirements and estimated the number of participants required to achieve a number needed to treat within clinically acceptable boundaries for the BI and mRS.
Results
We secured 2350 IPD (18 RCTs). For a 90% chance of statistical accuracy on the BI a rehabilitation RCT would require 273 participants per randomised group. Accurate interpretation of effect sizes would require 1000s of participants per group. Simulations for the mRS were not possible as a clinically relevant improvement was not detected when using this outcome measure.
Conclusions
Stroke rehabilitation RCTs with large sample sizes are required for accurate interpretation of effect sizes based on the BI. The mRS lacked sensitivity to detect change and thus may be unsuitable as a primary outcome in stroke rehabilitation trials
Study design and methods of the BoTULS trial: a randomised controlled trial to evaluate the clinical effect and cost effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A
Background
Following a stroke, 55–75% of patients experience upper limb problems in the longer term. Upper limb spasticity may cause pain, deformity and reduced function, affecting mood and independence. Botulinum toxin is used increasingly to treat focal spasticity, but its impact on upper limb function after stroke is unclear.
The aim of this study is to evaluate the clinical and cost effectiveness of botulinum toxin type A plus an upper limb therapy programme in the treatment of post stroke upper limb spasticity.
Methods
Trial design : A multi-centre open label parallel group randomised controlled trial and economic evaluation.
Participants : Adults with upper limb spasticity at the shoulder, elbow, wrist or hand and reduced upper limb function due to stroke more than 1 month previously.
Interventions : Botulinum toxin type A plus upper limb therapy (intervention group) or upper limb therapy alone (control group).
Outcomes : Outcome assessments are undertaken at 1, 3 and 12 months. The primary outcome is upper limb function one month after study entry measured by the Action Research Arm Test (ARAT). Secondary outcomes include: spasticity (Modified Ashworth Scale); grip strength; dexterity (Nine Hole Peg Test); disability (Barthel Activities of Daily Living Index); quality of life (Stroke Impact Scale, Euroqol EQ-5D) and attainment of patient-selected goals (Canadian Occupational Performance Measure). Health and social services resource use, adverse events, use of other antispasticity treatments and patient views on the treatment will be compared. Participants are clinically reassessed at 3, 6 and 9 months to determine the need for repeat botulinum toxin type A and/or therapy.
Randomisation : A web based central independent randomisation service.
Blinding : Outcome assessments are undertaken by an assessor who is blinded to the randomisation group.
Sample size : 332 participants provide 80% power to detect a 15% difference in treatment successes between intervention and control groups. Treatment success is defined as improvement of 3 points for those with a baseline ARAT of 0–3 and 6 points for those with ARAT of 4–56
Muscle and reflex changes with varying joint angle in hemiparetic stroke
<p>Abstract</p> <p>Background</p> <p>Despite intensive investigation, the origins of the neuromuscular abnormalities associated with spasticity are not well understood. In particular, the mechanical properties induced by stretch reflex activity have been especially difficult to study because of a lack of accurate tools separating reflex torque from torque generated by musculo-tendinous structures. The present study addresses this deficit by characterizing the contribution of neural and muscular components to the abnormally high stiffness of the spastic joint.</p> <p>Methods</p> <p>Using system identification techniques, we characterized the neuromuscular abnormalities associated with spasticity of ankle muscles in chronic hemiparetic stroke survivors. In particular, we systematically tracked changes in muscle mechanical properties and in stretch reflex activity during changes in ankle joint angle. Modulation of mechanical properties was assessed by applying perturbations at different initial angles, over the entire range of motion (ROM). Experiments were performed on both paretic and non-paretic sides of stroke survivors, and in healthy controls.</p> <p>Results</p> <p>Both reflex and intrinsic muscle stiffnesses were significantly greater in the spastic/paretic ankle than on the non-paretic side, and these changes were strongly position dependent. The major reflex contributions were observed over the central portion of the angular range, while the intrinsic contributions were most pronounced with the ankle in the dorsiflexed position.</p> <p>Conclusion</p> <p>In spastic ankle muscles, the abnormalities in intrinsic and reflex components of joint torque varied systematically with changing position over the full angular range of motion, indicating that clinical perceptions of increased tone may have quite different origins depending upon the angle where the tests are initiated.</p> <p>Furthermore, reflex stiffness was considerably larger in the non-paretic limb of stroke patients than in healthy control subjects, suggesting that the non-paretic limb may not be a suitable control for studying neuromuscular properties of the ankle joint.</p> <p>Our findings will help elucidate the origins of the neuromuscular abnormalities associated with stroke-induced spasticity.</p
A systematic review of randomised controlled trials assessing effectiveness of prosthetic and orthotic interventions.
BACKGROUND: Assistive products are items which allow older people and people with disabilities to be able to live a healthy, productive and dignified life. It has been estimated that approximately 1.5% of the world's population need a prosthesis or orthosis. OBJECTIVE: The objective of this study was to systematically identify and review the evidence from randomized controlled trials assessing effectiveness and cost-effectiveness of prosthetic and orthotic interventions. METHODS: Literature searches, completed in September 2015, were carried out in fourteen databases between years 1995 and 2015. The search results were independently screened by two reviewers. For the purpose of this manuscript, only randomized controlled trials which examined interventions using orthotic or prosthetic devices were selected for data extraction and synthesis. RESULTS: A total of 342 randomised controlled trials were identified (319 English language and 23 non-English language). Only 4 of these randomised controlled trials examined prosthetic interventions and the rest examined orthotic interventions. These orthotic interventions were categorised based on the medical conditions/injuries of the participants. From these studies, this review focused on the medical condition/injuries with the highest number of randomised controlled trials (osteoarthritis, fracture, stroke, carpal tunnel syndrome, plantar fasciitis, anterior cruciate ligament, diabetic foot, rheumatoid and juvenile idiopathic arthritis, ankle sprain, cerebral palsy, lateral epicondylitis and low back pain). The included articles were assessed for risk of bias using the Cochrane Risk of Bias tool. Details of the clinical population examined, the type of orthotic/prosthetic intervention, the comparator/s and the outcome measures were extracted. Effect sizes and odds ratios were calculated for all outcome measures, where possible. CONCLUSIONS: At present, for prosthetic and orthotic interventions, the scientific literature does not provide sufficient high quality research to allow strong conclusions on their effectiveness and cost-effectiveness
Functional hindrance due to spasticity in individuals with spinal cord injury during inpatient rehabilitation and 1 year thereafter
Study design: Prospective cohort study. Objective: To assess functional hindrance due to spasticity during inpatient rehabilitation and 1 year thereafter in individuals with spinal cord injury (SCI) and to determine factors that influence the hindrance. Setting: Eight specialized rehabilitation centres in the Netherlands. Methods: A total of 203 patients with recent SCI rated the hindrance they perceived due to spasticity in daily living at the start of active rehabilitation (t1), 3 months later (t2), at discharge (t3) and 1 year after discharge (t4). Hindrance was dichotomized into absent or negligible and present. Multilevel regression analyses were performed to determine the course of functional hindrance due to spasticity and its associations with possible determinants-namely, age, gender, cause, lesion level, motor completeness, spasticity and anti-spasticity medication. Results: The percentage of individuals that indicated functional hindrance due to spasticity ranged from 54 to 62% over time and did not change significantly over time (Delta t3t1 odds ratio (OR)=0.85, P=0.44;Delta t3t2 OR=1.20, P=0.41;Delta t3t4 OR=0.91, P=0.67). The percentage of individuals who experienced a lot of hindrance due to spasticity during specific activities ranged from 4 to 27%. The odds for experiencing functional hindrance due to spasticity were significantly higher for individuals with tetraplegia (OR=2.17, P=0.0001), more severe spasticity (OR=5.51, P Conclusion: Functional hindrance due to spasticity occurred in the majority of persons with SCI and did not change significantly during inpatient rehabilitation and 1 year thereafter. Factors that influence hindrance were determined