35 research outputs found
Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain myelin
Effect of long-term (90–100 days) exposure of rats to soluble salt of aluminum (AlCl(3)) on myelin lipid profile was examined. The long-term exposure to AlCl(3 )resulted in a 60 % decrease in the total phospholipid (TPL) content while the cholesterol (CHL) content increased by 55 %. Consequently the TPL / CHL molar ratio decreased significantly by 62 %. The phospholipid composition of the myelin membrane changed drastically; the proportion of practically all the phospholipid classes decreased by 32 to 60 % except for phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Of the latter two, proportion of PC was unchanged while PE increased in proportion by 47 %. Quantitatively, all phospholipid classes decreased by from 42 to 76% with no change in the PE content. However the membrane fluidity was not altered in Al-treated rats. Many of the changes we observe here show striking similarities with the reported phospholipid profiles of Alzheimer brains
Wld(S) Prevents Axon Degeneration through Increased Mitochondrial Flux and Enhanced Mitochondrial Ca(2+) Buffering
Wld(S) (slow Wallerian degeneration) is a remarkable protein that can suppress Wallerian degeneration of axons and synapses [1], but how it exerts this effect remains unclear [2]. Here, using Drosophila and mouse models, we identify mitochondria as a key site of action for Wld(S) neuroprotective function. Targeting the NAD(+) biosynthetic enzyme Nmnat to mitochondria was sufficient to fully phenocopy Wld(S), and Wld(S) was specifically localized to mitochondria in synaptic preparations from mouse brain. Axotomy of live wild-type axons induced a dramatic spike in axoplasmic Ca(2+) and termination of mitochondrial movement-Wld(S) potently suppressed both of these events. Surprisingly, Wld(S) also promoted increased basal mitochondrial motility in axons before injury, and genetically suppressing mitochondrial motility in vivo dramatically reduced the protective effect of Wld(S). Intriguingly, purified mitochondria from Wld(S) mice exhibited enhanced Ca(2+) buffering capacity. We propose that the enhanced Ca(2+) buffering capacity of Wld(S+) mitochondria leads to increased mitochondrial motility, suppression of axotomy-induced Ca(2+) elevation in axons, and thereby suppression of Wallerian degeneration
Mitochondria-Associated MicroRNAs in Rat Hippocampus Following Traumatic Brain Injury
Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the relevance of mitochondria in these pathways is unknown. Here, we present evidence supporting the association of miRNA with hippocampal mitochondria, as well as changes in mitochondria-associated miRNA expression following a controlled cortical impact (CCI) injury in rats. Specifically, we found that the miRNA processing proteins Argonaute (AGO) and Dicer are present in mitochondria fractions from uninjured rat hippocampus, and immunoprecipitation of AGO associated miRNA from mitochondria suggests the presence of functional RNA-induced silencing complexes. Interestingly, RT-qPCR miRNA array studies revealed that a subset of miRNA is enriched in mitochondria relative to cytoplasm. At 12h following CCI, several miRNAs are significantly altered in hippocampal mitochondria and cytoplasm. In addition, levels of miR-155 and miR-223, both of which play a role in inflammatory processes, are significantly elevated in both cytoplasm and mitochondria. We propose that mitochondria-associated miRNAs may play an important role in regulating the response to TBI
Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice
BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice.
METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting.
CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death
A simplified fluorimetric method for corticosterone estimation in rat serum, tissues and mitochondria
48-53A simplified procedure has been developed for the extraction and estimation of corticosterone from rat serum, tissues and mitochondria. The suitably diluted samples were treated with freshly prepared chloroform: methanol mixture (2:1, v/v) and then extracted directly with the chloroform. Almost quantitative recoveries (90% and above) were obtained with the present method, compared to poor recoveries (65-81%) and variable results obtained by earlier procedure. Quantification of corticosterone content in tissues, such as liver, brain and heart, and in the mitochondria indicated significant concentration of corticosterone in tissues and mitochondria, as compared to the serum. The presence of corticosterone in the mitochondria suggests that the hormone may play a role in regulation of mitochondrial gene expression and/or their turnove
Effect of long-term aluminum feeding on lipid/phospholipid profiles of rat brain synaptic plasma membranes and microsomes
Long-term exposure to AlCl_3 resulted in 57% phospholipid (TPL) content of synaptic plasma membranes from rat brain with significant decrease in the proportion and content of most of the phospholipid classes (32%- decreases was of lesser magnitude for phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The microsomal TPL and cholesterol (CHL) content decreased by 74% composition. However, the contents of all phospholipids decreased uniformly by about 70%. fluidized in Al fed rats. The results suggest that long-term exposure of rats to Al can alter the structure/function of synaptic plasma membranes and microsomes
Studies on kinetic properties of acid phosphatase from nuclei-free rat liver homogenate using different substrates
205-210<span style="font-size:14.0pt;line-height:
115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:hi"="" lang="EN-IN">Kinetic
properties of rat liver acid phosphatase were evaluated using the conventional
synthetic substrates sodium beta glycerophosphate (βGP) and p-nitrophenyl
phosphate (PNPP) and physiologically occurring phosphate esters of
carbohydrates,vitamins and nucleotides. The extent of hydrolysis varied
depending on the substrates; phosphate esters of vitamins and carbohydrates
were in general poor substrates. Kinetic analysis revealed the presence of two
components of the enzyme for all the substrates. Component I had low Km
and low Vmax. Opposite was true for component II. The Km
values were generally high for βGP, PNPP and adenosine diphosphate (ADP).
Amongst the nucleotides substrates AMP showed high affinity i.e. low Km.
The increase in enzyme activity in general at high substrate concentrati on
seems to be due to substrate binding and positive cooperativity. AMP which
showed highest affinity was inhibitory at high concentration beyond 1mM.
The results suggest that in situ the nucleotides may be the preferred
substrates for acid phosphatase.</span
β-Cell-specific pyruvate dehydrogenase deficiency impairs glucose-stimulated insulin secretion
Glucose-stimulated insulin secretion (GSIS) by β-cells requires the generation of ATP from oxidation of pyruvate as well as generation of coupling factors involving three different pyruvate cycling shuttles. The roles of several key enzymes involved in pyruvate cycling in β-cells have been documented using isolated islets and β-cell clonal lines. To investigate the role of the pyruvate dehydrogenase (PDH) complex (PDC) in GSIS, a murine model of β-cell-specific PDH deficiency (β-PDHKO) was created. Pancreatic insulin content was decreased in 1-day-old β-PDHKO male pups and adult male mice. The plasma insulin levels were decreased and blood glucose levels increased in β-PDHKO male mice from neonatal life onward. GSIS was reduced in isolated islets from β-PDHKO male mice with about 50% reduction in PDC activity. Impairment in a glucose tolerance test and in vivo insulin secretion during hyperglycemic clamp was evident in β-PDHKO adults. No change in the number or size of islets was found in pancreata from 4-wk-old β-PDHKO male mice. However, an increase in the mean size of individual β-cells in islets of these mice was observed. These findings show a key role of PDC in GSIS by pyruvate oxidation. This β-PDHKO mouse model represents the first mouse model in which a mitochondrial oxidative enzyme deletion by gene knockout has been employed to demonstrate an altered GSIS by β-cells