19 research outputs found

    Distance‐based time series classification approach for task recognition with application in surgical robot autonomy

    Full text link
    BackgroundRobotic‐assisted surgery allows surgeons to perform many types of complex operations with greater precision than is possible with conventional surgery. Despite these advantages, in current systems, a surgeon should communicate with the device directly and manually. To allow the robot to adjust parameters such as camera position, the system needs to know automatically what task the surgeon is performing.MethodsA distance‐based time series classification framework has been developed which measures dynamic time warping distance between temporal trajectory data of robot arms and classifies surgical tasks and gestures using a k‐nearest neighbor algorithm.ResultsResults on real robotic surgery data show that the proposed framework outperformed state‐of‐the‐art methods by up to 9% across three tasks and by 8% across gestures.ConclusionThe proposed framework is robust and accurate. Therefore, it can be used to develop adaptive control systems that will be more responsive to surgeons’ needs by identifying next movements of the surgeon. Copyright © 2016 John Wiley & Sons, Ltd.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138333/1/rcs1766.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138333/2/rcs1766_am.pd

    Automated robot‐assisted surgical skill evaluation: Predictive analytics approach

    Full text link
    BackgroundSurgical skill assessment has predominantly been a subjective task. Recently, technological advances such as robot‐assisted surgery have created great opportunities for objective surgical evaluation. In this paper, we introduce a predictive framework for objective skill assessment based on movement trajectory data. Our aim is to build a classification framework to automatically evaluate the performance of surgeons with different levels of expertise.MethodsEight global movement features are extracted from movement trajectory data captured by a da Vinci robot for surgeons with two levels of expertise – novice and expert. Three classification methods – k‐nearest neighbours, logistic regression and support vector machines – are applied.ResultsThe result shows that the proposed framework can classify surgeons’ expertise as novice or expert with an accuracy of 82.3% for knot tying and 89.9% for a suturing task.ConclusionThis study demonstrates and evaluates the ability of machine learning methods to automatically classify expert and novice surgeons using global movement features.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141457/1/rcs1850.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141457/2/rcs1850_am.pd

    Identification of Human NK17/NK1 Cells

    Get PDF
    Background: Natural killer (NK) cells have both cytolytic and immunoregulatory functions. We recently described that these cells release the inflammatory cytokines IL-17 and IFN-c. However, the precise identity of the NK cell subset(s) that secrete these cytokines is not known. Methodology/Principal Findings: To isolate the cells secreting IL-17 and IFN-c, we took advantage of the findings that Th17/Th1 cells express chemokine receptors. Therefore, CD56 + NK cells were stained with antibodies against various chemokine receptors and intracellularly with antibodies toward IL-17 and IFN-c. Consequently, we identified previously unrecognized subset of NK cells generated from normal human peripheral blood after activation with IL-2 but not PMA plus ionomycin. The cells are characterized by the expression of CD56 + and CCR4 +, produce IL-17 and IFN-c and are consequently named NK17/NK1 cells. They also express CD161, NKp30, NKp44, NKp46, NKG2D, CD158, CCL22, IL-2Rb and the common c chain but not CD127 or IL-23R. Further, they possess T-bet and RORct transcription factors. Antibodies to IL-1b, IL-6, IL-21, or TGF-b1 do not inhibit IL-2-induced generation of NK17/NK1 cells, suggesting that IL-2 has the capacity to polarize these cells. Notably, NK17/NK1 cells are abundant in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) without activation, and are generated from the peripheral blood of these patients after activation with IL-2

    Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy

    Get PDF
    Source at https://doi.org/10.2147/IJN.S208938. Background: Reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, trigger biodegradation of polymer-based nanoparticles (NPs) bearing pinacol-type boronic ester groups. These NPs may selectively release their cargo, in this case paclitaxel (PTX), at the high levels of ROS present in the intracellular environment of inflamed tissues and most tumors. Purpose: The main objective was to determine anti-tumor efficacy of PTX-loaded ROS-sensitive NPs and to examine whether macrophage infiltration had any impact on treatment efficacy. Methods: NPs were synthesized and their characteristics in the presence of H2O2 were demonstrated. Both confocal microscopy as well as flow cytometry approaches were used to determine degradation of ROS-sensitive NPs. HeLa cells were cultured in vitro and used to establish tumor xenografts in nude mice. In vivo experiments were performed to understand toxicity, biodistribution and anti-tumor efficacy of the NPs. Moreover, we performed immunohistochemistry on tumor sections to study infiltration of M1 and M2 subsets of macrophages. Results: We demonstrated that PTX delivered in NPs containing a ROS-sensitive polymer exhibits a better anti-tumor efficacy than PTX in NPs containing ROS-non-sensitive polymer, free PTX or Abraxane® (nab-PTX). The biodistribution revealed that ROS-sensitive NPs exhibit retention in liver, spleen and lungs, suggesting a potential to target cancer metastasizing to these organs. Finally, we demonstrated a correlation between infiltrated macrophage subsets and treatment efficacy, possibly contributing to the efficient anti-tumor effects. Conclusion: Treatment with ROS-sensitive NPs containing PTX gave an improved therapeutic effect in HeLa xenografts than their counterpart, free PTX or nab-PTX. Our data revealed a correlation between macrophage infiltration and efficiency of the different antitumor treatments, as the most effective NPs resulted in the highest infiltration of the anti-tumorigenic M1 macrophages

    Raman spectral signatures of mouse mammary tissue and associated lymph nodes: normal, tumor and mastitis

    Full text link
    Raman spectroscopy involves the interaction of light with the molecular vibrations and therefore can provide information about molecular structure, tissue composition and changes in its environment. We explored whether Raman spectroscopy can reliably distinguish mammary tumors from normal mammary tissues and other pathological states in mice. We analyzed a large number of Raman spectra from the tumor and normal mammary glands of mice injected with 4T1 tumor cells, which were collected using a high-resolution (less than 4 cm −1 ) Raman spectrometer at a fixed (785 nm) laser excitation wavelength and with 60 mW of laser power. The spectra of normal and tumor mammary glands showed consistent differences in the intensity of certain Raman bands and loss of some bands in the tumor spectra. Multivariate statistical methods—principal component analysis (PCA) and discriminant functional analysis (DFA)—were used to separate the data into different groups of mammary tumors, mastitis, lymph nodes contralateral and tumor-cell-injected sides, and normal contralateral and tumor-cell-injected sides. We demonstrate that this spectroscopic technique has the feasibility of discriminating tumor and mastitis from normal tissues and other pathological states in a short period of time and may detect tumor transformation earlier than the standard histological examination stage. Copyright © 2006 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55947/1/1565_ftp.pd

    Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft

    Get PDF
    We have investigated the biodistribution and tumor macrophage infiltration after intravenous injection of the poly(alkyl cyanoacrylate) nanoparticles (NPs): PEBCA (poly(2-ethyl-butyl cyanoacrylate), PBCA (poly(n-butyl cyanoacrylate), and POCA (poly(octyl cyanoacrylate), in mice. These NPs are structurally similar, have similar PEGylation, and have previously been shown to give large variations in cellular responses in vitro. The PEBCA NPs had the highest uptake both in the patient-derived breast cancer xenograft MAS98.12 and in lymph nodes, and therefore, they are the most promising of these NPs for delivery of cancer drugs. High-resolution magic angle spinning magnetic resonance (HR MAS MR) spectroscopy did not reveal any differences in the metabolic profiles of tumors following injection of the NPs, but the PEBCA NPs resulted in higher tumor infiltration of the anti-tumorigenic M1 macrophages than obtained with the two other NPs. The PEBCA NPs also increased the ratio of M1/M2 (anti-tumorigenic/pro-tumorigenic) macrophages in the tumors, suggesting that these NPs might be used both as a vehicle for drug delivery and to modulate the immune response in favor of enhanced therapeutic effects

    Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells.

    No full text
    Lipid nanocapsules (LNCs) have proven their efficacy in delivering different drugs to various cancers, but no studies have yet described their uptake mechanisms, paclitaxel (PTX) delivery or resulting cytotoxicity towards breast cancer cells. Herein, we report results concerning cellular uptake of LNCs and cytotoxicity studies of PTX-loaded LNCs (LNCs-PTX) on the three breast cancer cell lines MCF-7, MDA-MB-231 and MDA-MB-468. LNCs-PTX of sizes 50 ± 2 nm, 90 ± 3 nm and 120 ± 4 nm were developed by the phase inversion method. Fluorescence microscopy and flow cytometry were used to observe the uptake of fluorescently labeled LNCs and cellular uptake of LNCs-PTX was measured using HPLC analyses of cell samples. These studies revealed a higher uptake of LNCs-PTX in MDA-MB-468 cells than in the other two cell lines. Moreover, free PTX and LNCs-PTX exhibited a similar pattern of toxicity towards each cell line, but MDA-MB-468 cells appeared to be more sensitive than the other two cell lines, as evaluated by the MTT cytotoxicity assay and a cell proliferation assay based upon [3H]thymidine incorporation. Studies with inhibitors of endocytosis indicate that the cellular uptake is mainly via the Cdc42/GRAF-dependent endocytosis as well as by macropinocytosis, whereas dynamin-dependent processes are not required. Furthermore, our results indicate that endocytosis of LNCs-PTX is important for the toxic effect on cells. Western blot analysis revealed that LNCs-PTX induce cytotoxicity by means of apoptosis in all the three cell lines. Altogether, the results demonstrate that LNCs-PTX exploit different mechanisms of endocytosis in a cell-type dependent manner, and subsequently induce apoptotic cell death in the breast cancer cells here studied. The article also describes biodistribution studies following intravenous injection of fluorescently labeled LNCs in mice

    Drug-Loaded Photosensitizer-Chitosan Nanoparticles for Combinatorial Chemo- and Photodynamic-Therapy of Cancer

    Get PDF
    In this study we have developed biodegradable polymeric nanoparticles (NPs) containing the cytostatic drugs mertansine (MRT) or cabazitaxel (CBZ). The NPs are based on chitosan (CS) conjugate polymers synthesized with different amounts of the photosensitizer tetraphenylchlorin (TPC). These TPC–CS NPs have high loading capacity and strong drug retention due to π–π stacking interactions between the drugs and the aromatic photosensitizer groups of the polymers. CS polymers with 10% of the side chains containing TPC were found to be optimal in terms of drug loading capacity and NP stability. The TPC–CS NPs loaded with MRT or CBZ displayed higher cytotoxicity than the free form of these drugs in the breast cancer cell lines MDA-MB-231 and MDA-MB-468. Furthermore, light-induced photochemical activation of the NPs elicited a strong photodynamic therapy effect on these breast cancer cells. Biodistribution studies in mice showed that most of the TPC–CS NPs accumulated in liver and lungs, but they were also found to be localized in tumors derived from HCT-116 cells. These data suggest that the drug-loaded TPC–CS NPs have a potential in combinatory anticancer therapy and as contrast agents

    MS patients examined in this study.

    No full text
    <p>PB = peripheral blood. CSF = cerebrospinal fluid. RRMS = relapsing-remitting MS.</p

    Phenotypes of CD56<sup>+</sup> cells.

    No full text
    <p>IL-2-activated CD56<sup>+</sup> cells were isolated by EasySep human CD56 positive selection kit. They were examined for the expression of CD3, CD14, CD19 and CD56. Background control using isotype antibodies are also shown. Numbers indicate the percentage of positive cells. One of 5 experiments performed.</p
    corecore