89 research outputs found

    Reliability-Based Electronics Shielding Design Tools

    Get PDF
    Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation

    Pacing and Decision Making in Sport and Exercise: The Roles of Perception and Action in the Regulation of Exercise Intensity

    Get PDF
    In pursuit of optimal performance, athletes and physical exercisers alike have to make decisions about how and when to invest their energy. The process of pacing has been associated with the goal-directed regulation of exercise intensity across an exercise bout. The current review explores divergent views on understanding underlying mechanisms of decision making in pacing. Current pacing literature provides a wide range of aspects that might be involved in the determination of an athlete's pacing strategy, but lacks in explaining how perception and action are coupled in establishing behaviour. In contrast, decision-making literature rooted in the understanding that perception and action are coupled provides refreshing perspectives on explaining the mechanisms that underlie natural interactive behaviour. Contrary to the assumption of behaviour that is managed by a higher-order governor that passively constructs internal representations of the world, an ecological approach is considered. According to this approach, knowledge is rooted in the direct experience of meaningful environmental objects and events in individual environmental processes. To assist a neuropsychological explanation of decision making in exercise regulation, the relevance of the affordance competition hypothesis is explored. By considering pacing as a behavioural expression of continuous decision making, new insights on underlying mechanisms in pacing and optimal performance can be developed. © 2014 Springer International Publishing Switzerland

    The physiological strain index does not reliably identify individuals at risk of reaching a thermal tolerance limit

    Get PDF
    Purpose The physiological strain index (PSI) was developed to assess individuals' heat strain, yet evidence supporting its use to identify individuals at potential risk of reaching a thermal tolerance limit (TTL) is limited. The aim of this study was to assess whether PSI can identify individuals at risk of reaching a TTL. Methods Fifteen females and 21 males undertook a total of 136 trials, each consisting of two 40-60 minute periods of treadmill walking separated by ~ 15 minutes rest, wearing permeable or impermeable clothing, in a range of climatic conditions. Heart rate (HR), skin temperature (T sk), rectal temperature (T re), temperature sensation (TS) and thermal comfort (TC) were measured throughout. Various forms of the PSI-index were assessed including the original PSI, PSI fixed , adaptive-PSI (aPSI) and a version comprised of a measure of heat storage (PSI HS). Final physiological and PSI values and their rate of change (ROC) over a trial and in the last 10 minutes of a trial were compared between trials completed (C, 101 trials) and those terminated prematurely (TTL, 35 trials). Results Final PSI original , PSI fixed , aPSI, PSI HS did not differ between TTL and C (p > 0.05). However, differences between TTL and C occurred in final T sk , T re-T sk , TS, TC and ROC in PSI fixed , T re , T sk and HR (p < 0.05). Conclusion These results suggest the PSI, in the various forms, does not reliably identify individuals at imminent risk of reaching their TTL and its validity as a physiological safety index is therefore questionable. However, a physiological-perceptual strain index may provide a more valid measure

    Endurance performance is influenced by perceptions of pain and temperature: Theory, applications and safety considerations.

    Get PDF
    Models of endurance performance now recognise input from the brain, including an athlete’s ability to cope with various non-pleasurable perceptions during exercise, such as pain and temperature. Exercise training can reduce perceptions of both pain and temperature over time, partly explaining why athletes generally have a higher pain tolerance, despite a similar pain threshold, compared with active controls. Several strategies with varying efficacy may ameliorate the perceptions of pain (e.g. acetaminophen, transcranial direct current stimulation and transcutaneous electrical stimulation) and temperature (e.g. menthol beverages, topical menthol products and other cooling strategies, especially those targeting the head) during exercise to improve athletic performance. This review describes both the theory and practical applications of these interventions in the endurance sport setting, as well as the potentially harmful health consequences of their use

    Mechanisms of thermal acclimation to exercise and heat.

    No full text

    Induction and decay of short-term heat acclimation

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright SpringerThe purpose of this work was to investigate adaptation and decay from short-term (5-day) heat acclimation (STHA). Ten moderately trained males (mean ± SD age 28 ± 7 years; body mass 74.6 ± 4.4 kg; 4.26 ± 0.37 l min−1) underwent heat acclimation (Acc) for 90-min on 5-days consecutively (T a = 39.5°C, 60% RH), under controlled hyperthermia (rectal temperature 38.5°C). Participants completed a heat stress test (HST) 1 week before acclimation (Acc), then on the 2nd and 8th day (1 week) following Acc (T a = 35°C, 60% RH). Seven participants completed HSTs 2 and 3 weeks after Acc. HST consisted of 90-min cycling at 40% peak power output before an incremental performance test. Rectal temperature at rest (37.1 ± 0.4°C) was not lowered by Acc (95% CI −0.3 to 0.2°C), after 90-min exercise (38.6 ± 0.5°C) it reduced 0.3°C (−0.5 to −0.1°C) and remained at this level 1 week later (−0.5 to −0.1°C), but not two (0.1°C −0.4 to 0.5°C; n = 7) or 3 weeks. Similarly, heart rate after 90-min exercise (146 ± 21 b min−1) was reduced (−13: −6 to −20 b min−1) and remained at this level after 1 week (−13: −6 to −20 b min−1) but not two (−9: 6 to −23 b min−1; n = 7) or 3 weeks. Performance (746 s) increased 106 s: 59 to 152 s after Acc and remained higher after one (76 s: 31 to 122) but not two (15 s: −88 to 142 s; n = 7) or 3 weeks. Therefore, STHA (5-day) induced adaptations permitting increased heat loss and this persisted 1 week but not 2 weeks following Acc.Peer reviewe
    corecore