126 research outputs found

    Disposable versus reusable ware: Cost evaluation model development

    Get PDF
    The ever growing problem of solid waste, stricter environmental regulations, diminishing landfill space and escalating recycling costs have forced the foodservice operations using disposable ware to find economical alternatives to the solid waste generated. A computerized model was developed that enables foodservice operators to evaluate the cost differences between the use of disposable ware and reusable ware and further make a decision as to which ware is suitable, economically and environmentally, for their operation. The cost evaluation model was based on the 1969 Laventhol & Horwath model developed for the Permanent Ware Institute Chicago, Illinois. The model consists of three components: 1) The cost evaluation model (Spreadsheet), 2) The questionnaire, and 3) The user manual. The model was developed in four phases: 1) Identification and modification of key variables, 2) Spreadsheet design and development, 3) Questionnaire design and development and 4) User manual design and development. Default values and measures for the variables were established on the basis of the data from the foodservice operations, utility companies, refuse disposable agencies and foodservice machinery and equipment manufacturers. The spreadsheet program was computerized using Lotus 1-2-3 and later compiled with the Baler compiler to enhance the versatility and compatibility of the spreadsheet program. The validity and the accuracy of the final evaluations are directly dependent on how valid and accurate the data entered in the worksheet. To facilitate valid and accurate data collection the questionnaire was designed with self-explanatory instructions and appropriate default values as suggested if the respondent has difficulty in gathering the data. A user manual was developed to help the operators of the program to input data with ease and accuracy. The model was tested by analyzing data from a commercial and a non commercial operation. The model will be used by the Foodservice Coalition for Better Environment (FCBE) to assist the foodservice operators in evaluating the cost differences between disposable ware and reusable ware. On the basis of this evaluation they can decide which service ware would be appropriate for their operation

    public-private partnerships

    Get PDF
    Thesis(Master) -- KDI School: Master of Public Policy, 2022Despite the efforts being made globally to achieve sustainable development through public-private partnership projects, the number of canceled projects remains higher than concluded projects. Yet, we know very little about what determines the success of a PPP project. Review of the critical success factors (CSFs) that determine the success of PPP projects are outdated, and even when some information is available, it almost exclusively relies on qualitative case examinations. This paper attempts to fill this gap by first reviewing the existing literature to determine the list of CSFs. Then, via regression modeling, the paper attempts to determine a quantitative readiness index on the success of PPPs via four main groups: macroeconomic situation, favorable market conditions, governance & political climate, and regulatory & institutional environment. Based on the literature review, the study reveals the importance of nine CSFs: project type, project sector, contract period, private ownership, project financials, change in nations’ Gross Domestic Product (GDP), the consumer price index (CPI), income level target of the project, and the number of bids for a project. Using these factors as independent variables in a multivariate regression model, the paper finds that the factors identified explain over 71% of the variations in PPP success.INTRODUCTION LITERATURE REVIEW DATA SOURCING, SAMPLING, & METHODOLOGY POLICY RECOMMENDATIONS AND FINAL CONCLUSIONSmasterpublishedRavi Shankar PANDI

    Gaussian process models for SCADA data based wind turbine performance/condition monitoring

    Get PDF
    Wind energy has seen remarkable growth in the past decade, and installed wind turbine capacity is increasing significantly every year around the globe. The presence of an excellent offshore wind resource and the need to reduce carbon emissions from electricity generation are driving policy to increase offshore wind generation capacity in UK waters. Logistic and transport issues make offshore maintenance costlier than onshore and availability correspondingly lower, and as a result, there is a growing interest in wind turbine condition monitoring allowing condition based, rather than corrective or scheduled, maintenance.;Offshore wind turbine manufacturers are constantly increasing the rated size the turbines, and also their hub height in order to access higher wind speeds with lower turbulence. However, such scaling up leads to significant increments in terms of materials for both tower structure and foundations, and also costs required for transportation, installation, and maintenance. Wind turbines are costly affairs that comprise several complex systems connected altogether (e.g., hub, drive shaft, gearbox, generator, yaw system, electric drive and so on).;The unexpected failure of these components can cause significant machine unavailability and/or damage to other components. This ultimately increases the operation and maintenance (O&M) cost and subsequently cost of energy (COE). Therefore, identifying faults at an early stage before catastrophic damage occurs is the primary objective associated with wind turbine condition monitoring.;Existing wind turbine condition monitoring strategies, for example, vibration signal analysis and oil debris detection, require costly sensors. The additional costs can be significant depending upon the number of wind turbines typically deployed in offshore wind farms and also, costly expertise is generally required to interpret the results. By contrast, Supervisory Control and Data Acquisition (SCADA) data analysis based condition monitoring could underpin condition based maintenance with little or no additional cost to the wind farm operator.;A Gaussian process (GP) is a stochastic, nonlinear and nonparametric model whose distribution function is the joint distribution of a collection of random variables; it is widely suitable for classification and regression problems. GP is a machine learning algorithm that uses a measure of similarity between subsequent data points (via covariance functions) to fit and or estimate the future value from a training dataset. GP models have been applied to numerous multivariate and multi-task problems including spatial and spatiotemporal contexts.;Furthermore, GP models have been applied to electricity price and residential probabilistic load forecasting, solar power forecasting. However, the application of GPs to wind turbine condition monitoring has to date been limited and not much explored.;This thesis focuses on GP based wind turbine condition monitoring that utilises data from SCADA systems exclusively. The selection of the covariance function greatly influences GP model accuracy. A comparative analysis of different covariance functions for GP models is presented with an in-depth analysis of popularly used stationary covariance functions. Based on this analysis, a suitable covariance function is selected for constructing a GP model-based fault detection algorithm for wind turbine condition monitoring.;By comparing incoming operational SCADA data, effective component condition indicators can be derived where the reference model is based on SCADA data from a healthy turbine constructed and compared against incoming data from a faulty turbine. In this thesis, a GP algorithm is constructed with suitable covariance function to detect incipient turbine operational faults or failures before they result in catastrophic damage so that preventative maintenance can be scheduled in a timely manner.;In order to judge GP model effectiveness, two other methods, based on binning, have been tested and compared with the GP based algorithm. This thesis also considers a range of critical turbine parameters and their impact on the GP fault detection algorithm.;Power is well known to be influenced by air density, and this is reflected in the IEC Standard air density correction procedure. Hence, the proper selection of an air density correction approach can improve the power curve model. This thesis addresses this, explores the different types of air density correction approach, and suggests the best way to incorporate these in the GP models to improve accuracy and reduce uncertainty.;Finally, a SCADA data based fault detection algorithm is constructed to detect failures caused by the yaw misalignment. Two fault detection algorithms based on IEC binning methods (widely used within the wind industry) are developed to assess the performance of the GP based fault detection algorithm in terms of their capability to detect in advance (and by how much) signs of failure, and also their false positive rate by making use of extensive SCADA data and turbine fault and repair logs.;GP models are robust in identifying early anomalies/failures that cause the wind turbine to underperform. This early detection is helpful in preventing machines to reach the catastrophic stage and allow enough time to undertake scheduled maintenance, which ultimately reduces the O&M, cost and maximises the power performance of wind turbines. Overall, results demonstrate the effectiveness of the GP algorithm in improving the performance of wind turbines through condition monitoring.Wind energy has seen remarkable growth in the past decade, and installed wind turbine capacity is increasing significantly every year around the globe. The presence of an excellent offshore wind resource and the need to reduce carbon emissions from electricity generation are driving policy to increase offshore wind generation capacity in UK waters. Logistic and transport issues make offshore maintenance costlier than onshore and availability correspondingly lower, and as a result, there is a growing interest in wind turbine condition monitoring allowing condition based, rather than corrective or scheduled, maintenance.;Offshore wind turbine manufacturers are constantly increasing the rated size the turbines, and also their hub height in order to access higher wind speeds with lower turbulence. However, such scaling up leads to significant increments in terms of materials for both tower structure and foundations, and also costs required for transportation, installation, and maintenance. Wind turbines are costly affairs that comprise several complex systems connected altogether (e.g., hub, drive shaft, gearbox, generator, yaw system, electric drive and so on).;The unexpected failure of these components can cause significant machine unavailability and/or damage to other components. This ultimately increases the operation and maintenance (O&M) cost and subsequently cost of energy (COE). Therefore, identifying faults at an early stage before catastrophic damage occurs is the primary objective associated with wind turbine condition monitoring.;Existing wind turbine condition monitoring strategies, for example, vibration signal analysis and oil debris detection, require costly sensors. The additional costs can be significant depending upon the number of wind turbines typically deployed in offshore wind farms and also, costly expertise is generally required to interpret the results. By contrast, Supervisory Control and Data Acquisition (SCADA) data analysis based condition monitoring could underpin condition based maintenance with little or no additional cost to the wind farm operator.;A Gaussian process (GP) is a stochastic, nonlinear and nonparametric model whose distribution function is the joint distribution of a collection of random variables; it is widely suitable for classification and regression problems. GP is a machine learning algorithm that uses a measure of similarity between subsequent data points (via covariance functions) to fit and or estimate the future value from a training dataset. GP models have been applied to numerous multivariate and multi-task problems including spatial and spatiotemporal contexts.;Furthermore, GP models have been applied to electricity price and residential probabilistic load forecasting, solar power forecasting. However, the application of GPs to wind turbine condition monitoring has to date been limited and not much explored.;This thesis focuses on GP based wind turbine condition monitoring that utilises data from SCADA systems exclusively. The selection of the covariance function greatly influences GP model accuracy. A comparative analysis of different covariance functions for GP models is presented with an in-depth analysis of popularly used stationary covariance functions. Based on this analysis, a suitable covariance function is selected for constructing a GP model-based fault detection algorithm for wind turbine condition monitoring.;By comparing incoming operational SCADA data, effective component condition indicators can be derived where the reference model is based on SCADA data from a healthy turbine constructed and compared against incoming data from a faulty turbine. In this thesis, a GP algorithm is constructed with suitable covariance function to detect incipient turbine operational faults or failures before they result in catastrophic damage so that preventative maintenance can be scheduled in a timely manner.;In order to judge GP model effectiveness, two other methods, based on binning, have been tested and compared with the GP based algorithm. This thesis also considers a range of critical turbine parameters and their impact on the GP fault detection algorithm.;Power is well known to be influenced by air density, and this is reflected in the IEC Standard air density correction procedure. Hence, the proper selection of an air density correction approach can improve the power curve model. This thesis addresses this, explores the different types of air density correction approach, and suggests the best way to incorporate these in the GP models to improve accuracy and reduce uncertainty.;Finally, a SCADA data based fault detection algorithm is constructed to detect failures caused by the yaw misalignment. Two fault detection algorithms based on IEC binning methods (widely used within the wind industry) are developed to assess the performance of the GP based fault detection algorithm in terms of their capability to detect in advance (and by how much) signs of failure, and also their false positive rate by making use of extensive SCADA data and turbine fault and repair logs.;GP models are robust in identifying early anomalies/failures that cause the wind turbine to underperform. This early detection is helpful in preventing machines to reach the catastrophic stage and allow enough time to undertake scheduled maintenance, which ultimately reduces the O&M, cost and maximises the power performance of wind turbines. Overall, results demonstrate the effectiveness of the GP algorithm in improving the performance of wind turbines through condition monitoring

    Gaussian process operational curves for wind turbine condition monitoring

    Get PDF
    Due to the presence of an abundant resource, wind energy is one of the most promising renewable energy resources for power generation globally, and there is constant need to reduce operation and maintenance costs to make the wind industry more profitable. Unexpected failures of turbine components make operation and maintenance (O&M) expensive, and because of transport and availability issues, the O&M cost is much higher in offshore wind farms (typically 30% of the levelized cost). To overcome this, supervisory control and data acquisition (SCADA) based predictive condition monitoring can be applied to remotely identify early failures and limit downtime, boost production and decrease the cost of energy (COE). A Gaussian Process is a nonlinear, nonparametric machine learning approach which is widely used in modelling complex nonlinear systems. In this paper, a Gaussian Process algorithm is proposed to estimate operational curves based on key turbine critical variables which can be used as a reference model in order to identify critical wind turbine failures and improve power performance. Three operational curves, namely, the power curve, rotor speed curve and blade pitch angle curve, are constructed using the Gaussian Process approach for continuous monitoring of the performance of a wind turbine. These developed GP operational curves can be useful for recognizing failures that force the turbines to underperform and result in downtime. Historical 10-min SCADA data are used for the model training and validation

    SCADA-based wind turbine anomaly detection using Gaussian Process (GP) models for wind turbine condition monitoring purposes

    Get PDF
    The penetration of wind energy into power systems is steadily increasing; this highlights the importance of operations and maintenance, and also specifically the role of condition monitoring. Wind turbine power curves based on SCADA data provide a cost-effective approach to wind turbine health monitoring. This paper proposes a Gaussian Process (a non-parametric machine learning approach) based algorithm for condition monitoring. The standard IEC binned power curve together with individual bin probability distributions can be used to identify operational anomalies. The IEC approach can also be modified to create a form of real-time power curve. Both of these approaches will be compared with a Gaussian Process model to assess both speed and accuracy of anomaly detection. Significant yaw misalignment, reflecting a yaw control error or fault, results in a loss of power. Such a fault is quite common and early detection is important to prevent loss of power generation. Yaw control error provides a useful case study to demonstrate the effectiveness of the proposed algorithms and allows the advantages and limitations of the proposed methods to be determined

    Performance assessment of a wind turbine using SCADA based Gaussian Process model

    Get PDF
    Loss of wind turbine power production identified through performance assessment is a useful tool for effective condition monitoring of a wind turbine. Power curves describe the nonlinear relationship between power generation and hub height wind speed and play a significant role in analyzing the performance of a turbine. Performance assessment using nonparametric models is gaining popularity. A Gaussian Process is a nonlinear, non-parametric probabilistic approach widely used for fitting models and forecasting applications due to its flexibility and mathematical simplicity. Its applications extended to both classification and regression related problems. Despite promising results, Gaussian Process application in wind turbine condition monitoring is limited. In this paper, a model based on a Gaussian Process is constructed for assessing the performance of a turbine. Here, a reference power curve using SCADA datasets from a healthy turbine is developed using a Gaussian Process and then is compared with a power curve from an unhealthy turbine. Error due to yaw misalignment is a common issue with wind turbine which causes underperformance, hence it is used as case study to test and validate the algorithm effectiveness

    Lodging Marketing Literature: Analysis of Journals

    Get PDF
    Unlike the services marketing literature, lodging research publications appear to be limited to a few general topic areas. The authors present a comparative analysis of the evolution of lodging marketing and services marketing research and provides direction for future research agendas

    Comparative analysis of Gaussian Process power curve models based on different stationary covariance functions for the purpose of improving model accuracy

    Get PDF
    Gaussian Process (GP) models are increasingly finding application in wind turbine condition monitoring and in particular early fault detection. GP model accuracy is greatly influenced by the choice and type of the covariance functions (used to described the similarity between two given data points). Hence, the appropriate selection and composition of covariance functions is essential for accurate GP modelling. In this study, an in-depth analysis of commonly used stationary covariance functions is presented in which wind turbine power curve used where GP based power curve has been constructed using different stationary covariance functions, and after that, a comparative analysis has been carried out in order to identify the most effective covariance function. The commonly used squared exponential covariance function is taken as the benchmark, against which other covariance functions are assessed. The results show that the performance (in terms of model accuracy and uncertainty) of GP fitted power curve models based on rational quadratic covariance functions is almost the same as for the most commonly used squared exponential function. Thus, rational quadratic covariance functions can be used instead of squared exponential covariance functions. In this paper, strength and weakness of stationary covariance functions would be highlighted for effective condition monitoring

    Using Gaussian process theory for wind turbine power curve analysis with emphasis on the confidence intervals

    Get PDF
    High operation and maintenance (O&M) costs may affect the profitability and growth of wind turbine industries in long term, especially where offshore wind farms are concerned. With the increase in age of wind turbines and the expansion of offshore wind, the operation and maintenance (O&M) cost is expected to grow significantly which reinforces the drive towards condition based maintenance. Wind turbine power curves play a central role in the assessment of turbine operational health. Gaussian process theory is finding increasing application in this current emerging research area. This paper investigates the potential of Gaussian process models to improve the representation of wind turbine power curves and in particular the importance of confidence intervals as determined by such modeling

    Data-driven weather forecasting models performance comparison for improving offshore wind turbine availability and maintenance

    Get PDF
    Wind power is highly dependent on wind speed and operations offshore are affected by wave height; these together called turbine weather datasets that are variable and intermittent over various time-scales and signify offshore weather conditions. In contrast to onshore wind, offshore wind requires improved forecasting since unfavorable weather prevents repair and maintenance activities. This study proposes two data-driven models for long-term weather conditions forecasting to support operation and maintenance (O&M) decision-making process. These two data-driven approaches are long short-term memory network, abbreviated as LSTM, and Markov chain. An LSTM is an artificial recurrent neural network, capable of learning long-term dependencies within a sequence of data and is typically used to avoid the long-term dependency problem. While, Markov is another data-driven stochastic model, which assumes that, the future states depend only on the current states, not on the events that occurred before. The readily available weather FINO3 datasets are used to train and validate the performance of these models. A performance comparison between these weather forecasted models would be carried out to determine which approach is most accurate and suitable for improving offshore wind turbine availability and support maintenance activities. The entire study outlines the weakness and strength associated with proposed models in relations to offshore wind farms operational activities
    • …
    corecore