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Abstract: Wind energy is an attractive alternative to conventional sources of electricity generation due to its effectively zero 
carbon emissions. Wind power is highly dependent on wind speed and operations offshore are affected by wave height; 
these together called turbine weather datasets that are variable and intermittent over various time-scales and signify 
offshore weather conditions. In contrast to onshore wind, offshore wind requires improved forecasting since unfavourable 
weather prevents repair and maintenance activities.  Delayed repair results in increased downtime and reduced wind farm 
availability and energy yield.  
This paper proposes two data-driven models for long-term weather conditions forecasting to improve the wind farm 
availability and support operation and maintenance (O&M) decision-making process. These two data-driven approaches are 
Long Short-Term Memory Network, abbreviated as LSTM, and Markov chain. A LSTM is an artificial recurrent neural network 
(RNN), capable of learning long-term dependencies within a sequence of data and is typically used to avoid the long-term 
dependency problem. While, Markov is another data-driven stochastic model, which assumes that, the future states depend 
only on the current states, not on the events that occurred before.  The readily available weather datasets are obtained from 
FINO3 database to train and validate the performance of these data-driven models. A performance comparison between 
these weather forecasted models would be carried out to determine which approach is most accurate and suitable for 
improving offshore wind turbine availability and support maintenance activities. The full paper outlines the weakness and 
strength associated with proposed models in relations to offshore wind farms operational activities. 

1. Introduction 

          Offshore wind turbines have demonstrated remarkable 

growth in recent years due to its increasingly competitive 

electricity production costs and limited life cycle carbon 

emissions. Several countries are committing to sustainable 

energy targets and hence planning for substantial offshore 

wind generating capacity. As a result of these commitments, 

European cumulative offshore wind capacity reached 18,499 

MW by the end of 2018. The UK has the most substantial 

share of this offshore wind capacity at 44%, followed by 

Germany (34%) and Denmark (7%) of the EU capacity [1]. 

Due to complex logistics and transportation, offshore wind 

farm construction is challenging as well as costly, and O&M 

costs are substantial, [2, 3]. Due to the steady evolution of 

more cost-effective technology, wind sector has experienced 

rapid development during recent decades. Offshore turbines 

have increased in size appreciably, making them more cost-

effective, but at an operational level, offshore turbines face 

harsh weather conditions that may significantly delay 

inspection and maintenance activities and reduces availability 

and power production. Offshore maintenance activities 

account for about 15- 30% of the overall cost of wind power 

(assuming a twenty-year life span) which is equivalent to 75-

90% of the initial investment [4].  

Wind farm developers and operators are continuously 

searching for cost-effective strategies to minimise O&M 

costs, improve reliability and safety, and increase the return 

of investment [5]. Offshore wind farm maintenance can be 

planned, condition-based, or corrective, but the harsh 

offshore operational environment can lead to increase passive 

downtime [6]. Planned maintenance is performed at 

prescribed time intervals irrespective of other operational  

 

information that may be available; it aims to limit the 

occurrence of failures and minimise unscheduled 

maintenance work. In contrast, predictive (condition-based) 

maintenance is carried out in response to the condition of a 

machine identified through continuous monitoring or 

inspections. Corrective maintenance (or run-to-failure) is 

undertaken following the occurrence of failure; this turns out 

to be an expensive strategy and should be avoided whenever 

possible. Using a single maintenance strategy is considered to 

be a non-optimal option, and therefore, a suitable 

combination of planned, and corrective maintenance 

strategies are sought to improve the reliability and reduce 

downtime and O&M costs. Offshore maintenance activities 

are influenced by a range of factors, including weather 

conditions and the assessed probability of different 

component failures [7]. For instance, adverse weather 

conditions can limit access to offshore turbines and delay 

essential maintenance, leading to downtime and revenue loss. 

Wind speed and wave height are together called weather data 

as they signify the offshore weather conditions.  

2. Related work of forecasting using data-driven 
methods 

Accurate forecasting of weather data for the operational 

lifetime of an offshore wind farm is vital to determine its 

availability as well as facilitating effective operation and 

maintenance activities. With regards to maintenance 

activities for offshore turbines, the timing of maintenance is 

crucial because delay in maintenance increases downtime and 

reduces turbine availability, and this increases significantly 

under unfavourable weather conditions. Both wave height 
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and wind speed determine whether it is possible to perform 

maintenance activities at sea since the vessels access to 

offshore turbines are limited in by these factors. For example, 

[8] presents operational wave height limits for various forms 

of transportation, including helicopters and sea vessels to 

improve the ability to schedule maintenance, reducing costs 

related to vessel dispatch and recall due to unexpected wave 

patterns. Catterson et al. (2016), [9], proposed an economic 

forecasting metric (EFM) which considers the economic 

impact of an incorrect forecast above or below critical wave 

height boundaries. In this study, a methodology is described 

for formulating criterion where the connection between 

forecasting error and economic consequences are amplified 

in terms of opportunity cost. Various time series approaches 

were compared in terms of their capability to predict whether 

this limit will be exceeded during the mobilisation window. 

It has been found that an ensemble forecaster significantly 

outperforms all other models based on Root Mean Square 

Error (RMSE) values, but it is outperformed economically by 

splines and Support Vector Machines (SVMs) at longer 

predictions horizons. Significant economic benefits (of at 

least £55,350 per annum) resulted from applying RMSE 

instead of EFM for the 8 hr ahead case study. Taylor and Jeon 

(2018), [10], extended the work of [9] by incorporating 

probabilistic forecasting and examined whether a 

probabilistic approach to decision making is more effective 

than the deterministic approach used in [9]. They concluded 

that the wave height forecast by the probabilistic approach is 

the most accurate and should be included in the decision-

making process of whether or not to launch service vehicles 

for offshore turbines. They used kernel density estimation 

(KDE), time-varying parameter (TVP) regression models, 

autoregressive moving average generalised autoregressive 

conditional heteroscedasticity (ARMA-GARCH) models, 

and a combination of time series methods to produce density 

forecasts. The empirical results show that the bivariate 

ARMA-GARCH is the most accurate at density function 

forecasting for wave height and wind speed.  It is concluded 

that there is a monetary benefit in using a probabilistic 

approach to decision-making, rather than a deterministic 

approach based on point forecasts. Likewise, to improve the 

offshore availability and service vessel access, accurate 

forecasting of wind speeds and wave heights are vital [11]. 

Wind speed is highly variable in time and space, and that 

makes wind speed forecasting challenging for offshore 

applications such as O&M activity and wind farm installation. 

In the literature a variety of techniques to forecast short-term 

as well as long term wind speed, including physical models, 

have been proposed; for example [12] where numerical 

weather prediction (NWP) is mostly used; statistical methods 

[13] such as the ARIMA model; the intelligent models based 

on ANNs [14]; and the hybrid forecasting models [15], that 

include different types of approaches. Author of [16] carried 

out a performance comparison of ANN, ARIMA and hybrid 

models (the combination of ARIMA and ANN) for wind 

speed forecasting at different look-ahead times. The result 

showed that the hybrid model was more accurate in terms of 

forecast error than ANN and ARIMA independently. They 

used Mean Absolute Percentage Error (MAPE), Mean Square 

Error (MSE), and Mean Absolute Error (MAE) performance 

error metrics to evaluate the performance of the forecasting 

models. Generally, statistical methods and artificial 

intelligence models are efficient for short-term wind speed 

prediction but less so for long-term prediction [14, 16]. 

Furthermore, the author of [10] and [17] explained how wave 

height and wind speed affect maintenance scheduling and 

availability for the offshore wind farms, respectively.  

With the advancement of state-of-the-art 

computational technologies, computational performance has 

improved, and deep learning has become one of the most 

attractive technologies due to their improved capability, in 

particular overcoming the problems of overfitting and slow 

training speed as compared to traditional ANN techniques. 

Long Short-Term Memory (LSTM) is a deep learning 

approach that improves upon the recurrent neural network 

(RNN) circulation neural network, which is a particular form 

of RNN and generally its performance is better than 

traditional RNN methods, [18,19]. LSTM is an active 

research area with specific applications to forecasting, [20, 

21], and fault diagnosis [22] related to wind energy. The 

overarching objective of maintenance scheduling is to 

develop a detailed schedule of maintenance activities that 

have to be performed for a given time horizon. However, due 

to unfavourable environmental conditions, offshore 

maintenance scheduling is affected by weather conditions (in 

particular wind speed and wave height) and makes offshore 

maintenance and scheduling a complicated and challenging 

issue, [23]. Reliability and maintenance are interlinked, and 

hence accurate weather condition forecasts for the operational 

life not only improve maintenance scheduling but result in 

increased wind farm reliability. With regards to offshore wind 

farms, accurate weather forecasting helps identify weather 

windows for improved safety and O&M, and also for 

planning construction.  

      In the above literature, it has been demonstrated 

the needs for accurate weather condition forecasting and how 

it can affect the offshore O&M costs. According to a World 

Energy Council report, improvements in weather forecasting 

could minimise operational expenditure up to 3% and 

therefore attracted the attention of many researchers and 

offshore WTs operators to developed robust weather 

condition forecasting models to boost offshore WTs O&M 

activities, availability, and reliability. However, data-driven 

models applications to weather forecasting are limited. This 

paper proposes two data-driven models for weather 

forecasting that are trained and validated by the real weather 

data recorded from offshore database. The developed 

frameworks are then compared in order to find out which 

approach is effective for weather forecasting and improving 

uncertainty. This paper also identifies the necessary 

theoretical and practical gaps that must be resolved in order 

to gain broad acceptance of proposed data-driven models to 

support O&M decision making in the offshore wind industry. 

The paper is organised as follows: Section 3 presents a 

description of weather data. Section 4 describes the LSTM 

algorithm for weather forecasting. Section 5 presents the 

Markov model framework for weather forecasting. Section 6 

presents a comparative analysis of proposed weather 

forecasting methods. Section 7 summarises and provides 

concluding comments, including suggested future research.   
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3. Weather data descriptions 

Wind speed and wave height are the key weather parameters 

that determine whether it is possible to perform O&M 

activities for offshore wind turbines at sea; that is why they 

are referred in this study as weather data. The FINO3 [24] is 

located about 80 kilometres west of Sylt, in the midst of 

German offshore wind farms. The past three years of weather 

data obtained from FINO3 offshore wind farms database in 

which a 2 year period beginning with time stamp ‘1st January 

2013 00:00 AM’ and ending at timestamp ‘31st December 

2014 21:00’ has been selected to minimise long periods of 

missing observations; these data are used for model 

construction and validation. For this study, the first 70% 

(4088 data points) was used for LSTM model training and the 

rest, 30% (1753 data points), used for forecasting evaluation. 

Also, the 2015 year of datasets has been put aside for 

performance comparison purposes that briefly described in 

section 5. The total number of data points recorded at 3-hour 

intervals is 5840, where each value is the mean of three hourly 

measurements, though in general, for example, SCADA data 

collected from wind farm operators is of 10-minute resolution 

which is used for a condition or performance monitoring 

purposes.  

   Figs. 1 and 2 show the hourly time series of wind speed and 

wave height from 2013 to 2014, which reflect high variability. 

Further examination of Figs. 1 and 2 show that wave height 

and wind speed are correlated, as would be expected. This is 

further confirmed by the scatter plot of wave height and wind 

speed shown in Fig. 3. Autocorrelation widely used for 

identifying non-randomness on data and measuring and 

explaining the internal relationship between measured data in 

a time series.  Since wave heights have high volatility, 

therefore it necessary to find out the internal correlation and 

Fig. 4 suggest that time series of wave heights have 

considerable autocorrelation that persists despite high 

volatility. 

     Fig 1. 3 hrs time steps wind speed time-series data. 

     Fig 2. 3 hrs time-steps wave height time-series data 

 

         Fig 3. Scatter plot of wave height and wind speed 

 

             Fig. 4. Autocorrelations in wave height 

4. Weather condition forecast framework with 
LSTM 

The Long Term-Short Term Memory (LSTM) is a kind of 

recursive neural network, inspired by the biological 

architecture of the brain.  LSTMs allow error to be back 

propagated through time across the layers of the NN and by 

maintaining a more constant error; they allow recurrent nets 

to continue to learn over more extended time periods [25]. 

LSTMs perform better than conventional feed-forward neural 

networks, and RNNs. The LSTM can be supervised or 

unsupervised and automatically learn hierarchical patterns in 

deep structures [26]. A theoretical explanation of LSTMs can 

be found in [27]. In this study, a brief explanation of the 

LSTM model to forecast long-term weather time series data 

is provided where the hidden layer is treated as a memory unit 

as follows. 

Fig. 5 describes the LSTM network architecture for weather 

forecasting where historical weather data is used as an input 

to a LSTM layer. This is followed by a so-called fully 

connected layer and finally, a results layer. 

Fig. 5. Overview of proposed LSTM based weather 

forecasting 

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1049%2Fiet-rpg.2019.0941?_sg%5B0%5D=1qIBFgAC0l87-0Zxu9kaNO-kJH-1CF7ilLoBITDjwVEtfIL43aC8Mo1cVtlcqHi_UshCYRwzpLe035bn12JRIoI1IA.iUtd913cDjIPhppwXG39_AawVWHjUD2jX2XbjSbyKAb7vNbpYAuCZR6x9SGHHHjKf8ktfD6mdayljQhSl69hjA


This paper is a post-print of a paper submitted to and accepted for publication in IET Renewable Power Generation and 

is subject to Institution of Engineering and Technology. To cite the paper please use the doi : 10.1049/iet-rpg.2019.0941 

provided on the IET Digital Library page. 

4 

 

Fig.6 highlights the flow of a time series 𝑋 with 𝐶 features 

(channels) of length 𝑺 through an LSTM layer where first 

LSTM block takes initial state values of the network and a 

first-time step of the sequence to compute the first output and 

the updated cell state. 

 

      

 

 

Fig. 6. LSTM network architecture [28] 

As shown in Fig.6, at time step 𝒕, the LSTM block takes the 

current state of the network (𝐶𝑡−1, ℎ𝑡−1)  and the next time 

step of the sequence to calculate the output and the renewed 

cell state 𝐶𝑡. Both 𝐶𝑡 and  ℎ𝑡 are known as hidden states. This 

is further explained by Fig.7 where the LSTM layer consists 

of a memory cell, an input gate, an output gate, and a forget 

gate that control the cell state as well as the hidden state of 

the layer. The input gate (𝑖) controls the level of cell state 

update; the forget gate (𝑓) controls the level of cell state reset 

(forget); the cell candidate (𝑔) is used to add information to 

the cell state and the output gate (𝑜) is used to control the 

level of cell state added to a hidden state. The cell state stores 

information learned from the previous time steps. The 

input 𝑋𝑡  at time  𝑡  is selectively saved into the cell 𝐶𝑡 

determined by the input gate, and the state of the last moment 

cell 𝐶𝑡−1 is selectively forgotten by the forget gate. Finally, 

the output gate controls which part of the cell 𝐶𝑡 is added to 

the output ℎ𝑡.  

 
     Fig. 7. Inner structure of LSTM [28]   

W are the input weights; R the recurrent weights; and b is the 

bias which are the learnable weights of an LSTM layer. The 

matrices W, R, and b are concatenations of the input weights, 

the recurrent weights, and the bias of each element, 

respectively.  These matrices are concatenated as follows: 

      𝑊 =

[
 
 
 
𝑊𝑖

𝑊𝑓

𝑊𝑔

𝑊𝑜]
 
 
 
, 𝑅 =

[
 
 
 
𝑅𝑖

𝑅𝑓

𝑅𝑔

𝑅𝑜]
 
 
 
, 𝑏 =

[
 
 
 
𝑏𝑖

𝑏𝑓

𝑏𝑔

𝑏𝑜]
 
 
 

 

The cell state at time step 𝑡 is given by the following formula:                                                                              
              𝐶𝑡 = 𝑓𝑡Ꙩ 𝐶𝑡−1 + 𝑖𝑡Ꙩ𝑔𝑡                                   (1) 

Where Ꙩ denotes the Hadamard product (element-wise 

multiplication of vectors). 𝐶𝑡−1 is the previous cell state value. 

The hidden state at time step 𝑡 is given by: 

   ℎ𝑡 = 𝑂𝑡Ꙩ 𝜎𝑐(𝐶𝑡)                                            (2) 

Where 𝜎𝑐  is the state activation function. Here, the tangent 

function (tanh) is used to calculate the state action function.  

The input gate (𝑖𝑡), forget gate (𝑓𝑡), and output gate (𝑂𝑡) can 

be expressed as:  

    𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑋𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖)                                   (3) 

   𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑋𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓)                                      (4) 

  𝑂 = 𝜎𝑔(𝑊𝑜𝑋𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜)                                        (5) 

Where 𝑊𝑖 , 𝑊𝑓  and 𝑊𝑜  are the weight matrices, and 𝑏𝑖  , 𝑏𝑓 

and 𝑏𝑜 are the bias vectors. 𝜎𝑔 is the gate activation function. 

The outlined LSTM methodology is applied to the datasets 

described in section 2 to train and validate the proposed 

weather forecasting model.  It has implemented using the 

MATLAB deep learning toolbox, [28]. To minimise 

overfitting and to prevent the training from diverging, 

training datasets are standardised to give zero mean and unity 

standard deviation using the ‘Mu’ and ‘Sigma’ values (shown 

in Table 1). The calculated Mu and Sigma values are further 

used in the validation stage to standardise the test data. 

 Table 1. Mu and Sigma calculated values for training 

weather datasets. 

Training Datasets Mu Sigma 

Wind speed data 7.2673 3.4951 

Wave height data 0.9945 0.5939 

                       

The predictAndUpdateState function of MATLAB is 

incorporated into the LSTM weather forecast model to 

predict the values for multiple time steps into the future which 

use the previous prediction as input to the function and update 

the network state at each prediction.  

The objective of most deep learning techniques such as 

LSTM is to minimise the difference between the forecasted 

values and the actual values. This is popularly known as a 

Cost function or Loss function, and they are convex functions 

[28]. To make an accurate prediction based on LSTM, it is 

essential to minimise the cost function by finding the 

optimised value for weights and make sure that the algorithm 

generalises well. The Adam ((adaptive moment estimation) 

optimiser is one of the most popular gradient descent 

optimisation algorithms for first-order gradient-based 

optimisation of stochastic objective functions. It is based on 

adaptive estimates of lower-order moments that requires very 

little memory space and at the same time computationally 
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efficient. Moreover, Adam is well-suited to a wide range of 

non-convex optimisation problems in the field of deep 

learning as well as machine learning. Therefore, the proposed 

weather forecast model based on LSTM is trained and tuned 

using the Adam optimizer for parameters specifications 

outlined in Table 2.  

The above-described LSTM weather forecast model 

has been trained, and validated as per the data specifications 

of section 3. The validated data are plotted together with 

forecast results in Fig. 8 and 9. To prevent gradients from 

exploding, the gradient threshold was set to 6 for both wind 

speed and wave height datasets. The initial learning rate kept 

at 0.005 and a specified drop in the learning rate after 1000 

data points for wind speed and 700 data points for wave 

height by multiplying by a factor of 0.02. This specification 

varies with the nature of the datasets (e.g., size, time-steps) 

used for training the LSTM model. Nevertheless, the LSTM 

found to be promising in weather forecasting and follows the 

desired variance when tested and trained with FINO3 dataset.  

This is emphasised by the calculated values of RMSE that 

indicate respectable forecasting. It is worth to note that, in 

order to do effective long term forecasting (typically of 

several years), parameters such as lags, number of hidden 

units, and number of training iterations need to be tuned 

depending upon the size of the training datasets. Otherwise, 

it leads to overfitting, which ultimately affects the forecasting 

accuracy of the LSTM model. 

   Fig. 8. LSTM based wave height model validation         

                 

      Fig. 9. LSTM based wind speed model validation   

5. Weather condition forecasts from Markov 

model 

Markov models are stochastic processes that assume that 

future states depend only on the current state and on the 

events that occurred before this [29].  Such models are widely 

used in forecasting and have been applied to planning 

offshore O&M activities [30].  For this reason, the Markov 

model-based weather forecast is considered to provide a good 

benchmark against which to assess the LSTM model. A brief 

literature review on Markov modelling and its application to 

offshore technologies can be found in [30].  The Markov 

methodology for weather data forecasting is outlined below.    

     Discrete-time Markov chains consider a finite number of 

states in a system (different wave heights in this case) and 

then finds the probability each state has of evolving into any 

of the possible states in the system (including itself). This 

creates a matrix of probabilities where each element 𝑝𝑖𝑗  

produce the probability of state ‘𝑖’ to turn into state ‘𝑗’. Using 

this matrix, together with the initial state of the system, the 

desired number of transitions can be generated.  

Fig. 10 Markov chain state transition diagram [31] 

This whole methodology described by Markov chain state 

transition diagram and is shown in Fig.10. In weather time 

series simulations, one probability matrix per month is 

calculated to account for seasonality. After discretising 

historical weather data, the subsequent step is to obtain these 

Markov probability matrixes. To obtain them, the number of 

times each of the possible wave height values (‘𝑖’) takes place 

in the historical dataset for each month searched and the 

number of times it evolves into each of the other wave height 

Table 2 LSTM Network parameter specification for training 

LSTM model Max 

Epochs 

Gradient 

Threshold 

Initial 

Learn rate 

Learn Rate 

Schedule 

Learn Rate 

Drop Period 

Learn Rate 

Drop factor 

Wind speed 1000 6 0.005 Piecewise 600 0.02 

Wave height 700 6 0.005 Piecewise 400 0.02 
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values (‘𝑗’). Then, calculates the probability of wave height 

state ‘𝑖’ turning into ‘𝑗’ using the following equation:  

                     𝑝𝑖𝑗 =
𝑛𝑖𝑗

𝑁𝑖
                                                              (6) 

Where 𝑛𝑖𝑗 is the number of its transitions from wave height 

‘𝑖’ to ‘𝑗’, and 𝑁𝑖 is the total number of times state ‘𝑖’ appears.  

These probabilities are then grouped per month in the form of 

the matrix. The similar approach taken for wind speed 

forecasting but here seasonality is not considered. Instead, the 

probability of each wave height value being associated with 

each wind speed is established by the following equation 

               𝑝𝑖𝑘
′ =

𝑛𝑖𝑘

𝑁𝑖
                                                (7)                          

Where 𝑛𝑖𝑘 is the number of times wind speed ‘𝑘′ appears for 

wave height ‘ 𝑖 ’. Then includes these probabilities in the 

matrix form like wave height. 

Using these probability matrixes for both weather parameters 

and setting initial pairs of values, future values if theirs can 

be predicted for future years in a sequence of time steps. 

      Fig. 11. Markov based wave height model validation 

 

 

    Fig. 12. Markov based wind speed model validation.  

To be consistent with the analysis, the weather datasets also 

divided into 70:30 ratio for Markov weather forecasting 

model training and validation purposes and methodology 

described in section 3. Here, historical weather data are 

discretised with a resolution of 0.2 m for wave height and of 

1 m/s for wind speed for computational feasibility purposes. 

Due to this, a finite number of possible values for the 

variables are generated, which is vital to apply discrete-time 

Markov chains method for long-term predictions. For the 

sake of simplicity, a 3 hrs time step for forecast data was used    

as it provides a balance between the reliability of the forecast 

and time resolution for availability simulations.  Figure 11 

and 12 are the forecast values of wave height and wind speed 

based on the Markov model, and when it compared with 

testing data points, it has been found that Markov model 

forecasted values are closed to the tested values of the wave 

height and wind speed and follows the expected pattern, 

despite having slight differences due the element of 

randomness in the Markov model.  

6. Proposed weather forecast framework 
performance comparisons 

 Based on the above analysis, it has been found that both 

proposed models are effective in weather condition 

forecasting. In this section, we quantitatively compare the 

two approaches.  The modelled data-driven methods here 

extended are used to forecast one year of weather data (i.e., 

2015), which is then compared with actual yearly data (the 

historical data) via uncertainty analysis and different model 

evolution Indexes. For the sake of simplicity and a better 

understanding of comparative analysis of the proposed 

methods, forecasted and historical yearly datasets are divided 

into individual months. By doing this, performance 

comparison of LSTM and Markov models together with 

historical data statistically visualised for short-term as well as 

long term forecast, are shown in Figs. 13 and 14. For wave 

height forecasting, the LSTM accuracy is better than Markov 

across the entire range of historical data, see Fig 13.  
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Fig. 13 Wave height forecasted models performance 

comparisons 

Fig. 14 Wind speed forecasted models performance 

comparisons 

Furthermore, concerning uncertainty analysis, the LSTM 

wave forecasted model had a reduced uncertainty as 

compared to the Markov based wave model, as shown in Fig 

15. It should be noted that the standard deviation of the 

predicted values of the models is used to calculate the error 

bars for uncertainty analysis. However, in the performance 

comparison of LSTM and Markov for wind speed prediction, 

the latter performed better as illustrated in Fig 14. The 

uncertainty associated with wind speed forecasting for 

Markov and LSTM is shown in Fig 16 and confirm that the 

Markov has relatively lower uncertainty than LSTM. This is 

further validated by the statistical Evaluation Indexes as 

described below. 

 

Fig. 15 uncertainty associated with forecasted wave height 

models 

Fig. 16 uncertainty associated with forecasted wind speed 

models 

Using Model Evaluation Indexes 

Several evaluation indexes can be used to evaluate the 

performance forecasting models such as the root-mean-

squared error (RMSE), normalised mean absolute percentage 

error (NMAPE), symmetric mean absolute percentage error 

(sMAPE), mean absolute error (MAE) [32]. To confirm the 

previous conclusion, here we used RMSE and MAE to 

appraise the proposed weather forecasting models, expressed 

as:  

                  𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑋𝑖

′ − 𝑋𝑖)|
𝑁
𝑖=1                               (8) 

        RMSE = √∑ (Xi
′ − Xi)

2N
i=1

𝑁
                                   (9) 

Where 𝑁 is the size of training or test samples, and 𝑋𝑖
′ and 

𝑋𝑖 are the forecasted and measured value, respectively.  

The RMSE is a square root of the mean of the squared 

difference between the measured and forecasted values of 

weather data and considered a good indicator for revealing 

relatively large forecast errors. The MAE is the mean of the 

absolute values of the differences between the measured and 

predicted values of weather data and reflects the actual 

forecasted value error.  The smaller are the values of RMSE 

or MAE, and the better is the forecasting accuracy. The 

RMSE and MAE values of the LSTM and Markov models 

have been tabulated in Table 3 and confirm the previous 

analysis. The calculated RMSE and MAE values of LSTM 

for wave height prediction are smaller than Markov, and 

therefore, wave forecasting based on LSTM is more accurate 

than Markov because RMSE and MAE values of Markov 

models are smaller as compared to LSTM models. While in 

case of wind speed prediction, Markov accuracy is relatively 

better as they have smaller values of RMSE and MAE. 

Table 3. Performance validation of LSTM and Markov 

model using evaluation metrics 

7. Conclusion and Discussion  

The importance of weather condition for improving the 

offshore wind farms accessibility and maintenance will only 

increase in coming years as more offshore assets are installed. 

Accurate prediction of weather conditions is useful for 

planning maintenance activities and thereby increasing 

operational lifetime and improving offshore turbine 

availability.  The resulting increased revenues will benefit 

offshore operators in the long term.  

      Models RMSE MAE 

LSTM wave height 0.18 0.13 

Markov wave height 0.24 0.18 

LSTM wind speed 2.58 1.89 

Markov wind speed 1.52 1.13 
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Two data-driven methods (LSTM and Markov) have 

been proposed for long-term weather forecasting where 

FINO3 data taken to test and validate the proposed techniques 

forecasting accuracy. Comparative studies suggest that with 

specific datasets of FINO3, LSTM performance (in terms of 

accuracy and uncertainty) it is less effective for wind speed 

forecasting while relatively better at wave height forecasting, 

as illustrated in Figs. 13 and 14 and documented in Table 3. 

One main issue associated with the LSTM network is the 

training time which increases with the size of training datasets 

and parameter specifications (e.g., hidden layer and Epochs) 

and therefore including several years of weather data for 

training model is challenging and time-consuming, unlike the 

Markov model.  

    This research outlines application of data-driven models 

for weather forecasting; however, the result might be 

different if proposed data-driven models are tested against 

different resolution (e.g., 10 minutes, 1 hrs) of datasets. 

Therefore, next task is to carry out sensitivity analysis of 

these proposed data-driven models and this is kept for future 

works. 
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