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Abstract 

Wind energy has seen remarkable growth in the past decade, and installed wind 

turbine capacity is increasing significantly every year around the globe. The 

presence of an excellent offshore wind resource and the need to reduce carbon 

emissions from electricity generation are driving policy to increase offshore wind 

generation capacity in UK waters. Logistic and transport issues make offshore 

maintenance costlier than onshore and availability correspondingly lower, and as 

a result,  there is a growing interest in wind turbine condition monitoring allowing 

condition based, rather than corrective or scheduled, maintenance. 

Offshore wind turbine manufacturers are constantly increasing the rated size the 

turbines, and also their hub height in order to access higher wind speeds with 

lower turbulence. However, such scaling up leads to significant increments in 

terms of materials for both tower structure and foundations, and also costs 

required for transportation, installation, and maintenance. Wind turbines are 

costly affairs that comprise several complex systems connected altogether (e.g., 

hub, drive shaft, gearbox, generator, yaw system, electric drive and so on). The 

unexpected failure of these components can cause significant machine 

unavailability and/or damage to other components. This ultimately increases the 

operation and maintenance (O&M) cost and subsequently cost of energy (COE). 

Therefore, identifying faults at an early stage before catastrophic damage occurs 

is the primary objective associated with wind turbine condition monitoring. 

Existing wind turbine condition monitoring strategies, for example, vibration 

signal analysis and oil debris detection, require costly sensors. The additional 

costs can be significant depending upon the number of wind turbines typically 

deployed in offshore wind farms and also, costly expertise is generally required 

to interpret the results. By contrast, Supervisory Control and Data Acquisition 
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(SCADA) data analysis based condition monitoring could underpin condition 

based maintenance with little or no additional cost to the wind farm operator. 

A Gaussian process (GP) is a stochastic, nonlinear and nonparametric model 

whose distribution function is the joint distribution of a collection of random 

variables; it is widely suitable for classification and regression problems. GP is a 

machine learning algorithm that uses a measure of similarity between subsequent 

data points (via covariance functions) to fit and or estimate the future value from 

a training dataset. GP models have been applied to numerous multivariate and 

multi-task problems including spatial and spatiotemporal contexts. Furthermore, 

GP models have been applied to electricity price and residential probabilistic load 

forecasting, solar power forecasting. However, the application of GPs to wind 

turbine condition monitoring has to date been limited and not much explored.  

This thesis focuses on GP based wind turbine condition monitoring that utilises 

data from SCADA systems exclusively. The selection of the covariance function 

greatly influences GP model accuracy. A comparative analysis of different 

covariance functions for GP models is presented with an in-depth analysis of 

popularly used stationary covariance functions. Based on this analysis, a suitable 

covariance function is selected for constructing a GP model-based fault detection 

algorithm for wind turbine condition monitoring. 

By comparing incoming operational SCADA data, effective component 

condition indicators can be derived where the reference model is based on 

SCADA data from a healthy turbine constructed and compared against incoming 

data from a faulty turbine. In this thesis, a GP algorithm is constructed with 

suitable covariance function to detect incipient turbine operational faults or 

failures before they result in catastrophic damage so that preventative 

maintenance can be scheduled in a timely manner. In order to judge GP model 

effectiveness, two other methods, based on binning, have been tested and 

compared with the GP based algorithm. This thesis also considers a range of 

critical turbine parameters and their impact on the GP fault detection algorithm. 
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Power is well known to be influenced by air density, and this is reflected in the 

IEC Standard air density correction procedure. Hence, the proper selection of an 

air density correction approach can improve the power curve model. This thesis 

addresses this, explores the different types of air density correction approach, and 

suggests the best way to incorporate these in the GP models to improve accuracy 

and reduce uncertainty. 

Finally, a SCADA data based fault detection algorithm is constructed to detect 

failures caused by the yaw misalignment. Two fault detection algorithms based 

on IEC binning methods (widely used within the wind industry) are developed to 

assess the performance of the GP based fault detection algorithm in terms of their 

capability to detect in advance (and by how much) signs of failure, and also their 

false positive rate by making use of extensive SCADA data and turbine fault and 

repair logs. GP models are robust in identifying early anomalies/failures that 

cause the wind turbine to underperform. This early detection is helpful in 

preventing machines to reach the catastrophic stage and allow enough time to 

undertake scheduled maintenance, which ultimately reduces the O&M, cost and 

maximises the power performance of wind turbines. Overall, results demonstrate 

the effectiveness of the GP algorithm in improving the performance of wind 

turbines through condition monitoring. 
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Chapter 1 
 

 

Introduction and research motivation; aim and objectives 

 

Due to the presence of an abundant wind resource in many countries, wind energy 

has become one of the most promising renewable energy resources for power 

generation.  Wind turbine technology has steadily improved, but despite this, 

there is a pressing need to make the wind industry more profitable; a fundamental 

way to do this is to reduce operation and maintenance (O&M) costs. According 

to [1], O&M makeup 20% -25% of the total lifetime costs of an offshore wind 

farm and this percentage can reach 35% for a wind turbine at the end of life.  This 

highlights the importance of research into O&M in order to reduce these 

significant costs. Unexpected failures of turbine components make O&M 

expensive and reduce reliability and energy yield.  

In this chapter, Section 1.1 outlines the research challenge that this thesis attempts 

to address. Section 1.2 details the aim and objectives of the work. In Section 1.3, 

the novel contributions of this PhD thesis are summarised. Section 1.4 provides 

an overview of the thesis, briefly describing the content of each chapter and the 

general thesis layout. Section 1.5 lists the research publications that have resulted 

from the research undertaken for the thesis. 
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1.1 Problem description/ Motivation 
 

With the rapid increase of wind farm installation, it is becoming more essential 

to analyse the performance of operational wind turbines in order to maximise 

their efficiency in the long run and produce a maximum power output. The 

increasing trend for offshore deployment plus poor offshore availability and 

accessibility suggest the need for an effective and reliable condition based 

maintenance scheme for wind turbines, rather than the traditional condition 

monitoring techniques, deployed on wind turbines (onshore and offshore) across 

Europe and America which can support a responsive repair and scheduled 

maintenance strategy. A recent trend indicates an increasing failure rate as wind 

turbine capacity rises. This is due to the complexity of the wind turbine system. 

The use of expensive sensors increase the overall cost of turbines.  

The P-F curve (shown in Figure 1.1) illustrates the behaviour of the component 

before functional failure has occurred [2]. It is worth noting that the P-F curve 

may take various shapes, linear or exponential, but is generally represented as an 

exponential as shown in Figure 1.1. The horizontal axis of the P-F curve defines 

time-in-service for the machine, and the vertical axis signifies the performance 

measure.  

 

Figure 1.1: Evolution of component condition with deterioration [2] 



 
21 | P a g e  

 

In Figure 1.1, P stands for the Point of Defect where potential failure of the asset 

can be identified and F stands for the point of Functional Failure or Loss of 

Function and the ‘window’ of time between these points is crucial for effective 

deployment of condition-based maintenance since it allows for improved 

maintenance scheduling. From an economic point of view, early detection of a 

potential anomaly is necessary which prevent catastrophic failure and resulting 

downtime. For example, a lack of attention to a worn bearing can result in a 

catastrophic failure of an entire gearbox involving considerable financial loss and 

significant downtime. This leads to the potential benefits of advanced up-to-dated 

condition monitoring approaches for minimising breakdown while saving costs 

by avoiding periodic assessment and associated downtime in context to wind 

turbine O&M. 

Approaches that can identify faults at an early stage correctly without false alarms 

gives sufficient time for the turbine operator to make decisions regarding 

maintenance scheduling before the incipient anomalies reach a catastrophic stage, 

would, therefore, be beneficial for reducing turbine downtime and improving the 

availability.  

This thesis presents a machine learning approach for wind turbine condition 

monitoring based on an operational power curve where 10-minute SCADA data 

is used. The specific objectives associated with this thesis are outlined in the next 

section. 

1.2 Aims and Objectives 
 

The main aim of the work set out in this thesis was to investigate and explore the 

application of Gaussian Process (GP) models for wind turbine condition 

monitoring based on SCADA data analysis. While doing so, different 

methodologies were taken into account in order to improve the performance of 

GP models and come out with a GP model that requires low processing power 

and low computational cost. Since most damages due to wind turbine unexpected 
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failures lead to catastrophic failures causes’ significant downtime and high 

maintenance cost.  Particular emphasis has been to GP models in this study due 

to their potential to detect such failures quickly with no or few false alarms. The 

overall objectives associated with this PhD work are:  

 To compare the available range of statistical and machine learning based 

analysis methods and assess which of these are most effective at extracting 

wind turbine component condition from wind farm SCADA 

data.  Advantages and disadvantages of the different approaches will be 

identified.  

 The assess the performance of the leading SCADA data analysis algorithms 

in terms of their capability to detect in advance (and by how much) signs of 

failure, and also their false positive rate by making use of extensive SCADA 

data and turbine fault and repair logs. 

 To improve upon existing SCADA data analysis algorithms and develop 

new approaches where appropriate, and to test and refine these in relation 

to extensive operational data. 

In short, this PhD project is focused on SCADA based wind turbine condition 

monitoring using GP where the full potential of GP models is explored. Particular 

emphasis is given to improving GP model accuracy by incorporating key 

variables relevant to wind turbine operation.   

1.3 Contribution to knowledge  

This thesis has attempted to introduce practical, quick and convenient GP models 

to assess the performance and or condition of an operating wind farm via the use 

of SCADA and modelled wind data;  The developed GP models work either as 

an independent performance assessment tool or as a complementary tool for 

improving the condition monitoring system of wind turbines. The research 

problem outline for this thesis is as follow. 
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Can GP models improve SCADA based performance/condition monitoring? 

To address this research problem, the following original contributions to 

knowledge have been made by the author; further details can be found in Chapters 

3 to 8 and are summarised as follows in chronological orders: 

 Covariance function is used to describe the similarity between two points and 

its impact the GP models accuracy. Therefore, it is necessary to select an 

appropriate covariance function for condition monitoring purposes. GP 

power curve model constructed based on different types of popularly used 

covariance function and then the comparative analysis is being carried out in 

order to find out the most suitable covariance function for GP models.  

 Two advanced nonparametric approaches, namely, Random Forest (RF), and 

Support Vector Machine (SVM) are undertaken in order to compare GP 

model performance (concerning uncertainty and accuracy) where power 

curve used as a key indicator to assess the individual methods modelling 

accuracy. Furthermore, results obtained from these methods have been 

compared using suitable performance error metrics to find out the best 

method for modelling and robust fault detection capabilities based power 

curve.  

 SCADA based three operational curves constructed using GP model for 

effective condition monitoring. These GP operational curves (power curve, 

rotor curve and blade pitch angle curve) are then compared with IEC binning 

method (widely used by wind industry) in order to analyse the strength and 

weakness of GP models.  

 Power is well known to be influenced by air density, and this is reflected in 

the IEC Standard air density correction procedure. The primary objective of 

this research is to explore whether IEC (a traditional approach) to air density 

correction is the most effective when estimating power curves using a GP 

model. To do this definitively, SCADA datasets from turbines located in 
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extremely low and high-temperature regions will be used. Since temperature 

is the most noteworthy factor influencing air density, these datasets have air 

density values that are very far from the IEC Standard air density, and this is 

key to understanding its role in GP power curve models. The result suggests 

that instead of doing IEC pre-correction, adding air density directly adding 

into the GP model improves model accuracy and reduces the uncertainty 

significantly.  

 In this research, the GP model for wind turbine anomaly detection is being 

proposed. Yaw misalignment causes significant power loss and downtime 

and therefore used as a case study. In order to judge GP model effectiveness, 

two other methods based on binning constructed have been tested and 

compared with GP based algorithm. In this research, we found that the GP 

model was able to detect the anomaly effectively with the alarm raised only 

1.5 hours after the fault occurred. Hence, confirming that the GP approach 

provides both fast and robust fault identification. 

 In this research, the impact of different turbine performance parameters 

(blade pitch angle and rotor speed) on GP power curve model accuracy and 

uncertainty presented. The inclusion of these performance parameters 

improves the GP model accuracy and uncertainty in which the impact of rotor 

speed is significant. To demonstrate this, the GP fault detection algorithm 

constructed with the inclusion of rotor speed and compared with GP fault 

detection algorithm that does not have rotor speed inclusion.  The 

comparative analysis suggests that GP fault detection algorithm with the 

inclusion of rotor speed able to detect the failures after 50 minutes of the first 

sign of failures without any false positives while GP fault detection algorithm 

without the inclusion of rotor speed took approximately 1.5 hrs. This proof 

that the inclusion of rotor speed improves the GP model capability to detect 

wind turbines failures.  
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Finally, chapter 9 summarises the key points of each chapter along with the 

conclusion. In the end, future work associated with this thesis research work in 

this chapter. 

Overall, this thesis research is of great importance for the academic and industry 

related to wind turbine SCADA based condition and or performance monitoring 

and how GP models useful in solving an issue related to condition monitoring. 

This gives an effective way to use GP for early failure detection, condition 

monitoring, performance monitoring and optimise power performance of wind 

turbine using extensive SCADA datasets.  

1.4 Thesis overview 

 This thesis is organised to present the progress made and results obtained 

throughout the PhD study. There are 9 chapters in total, each of which will be 

briefly covered below. 

Chapter 1 briefly summarises the research context and motivation, lists the aim 

and objectives and outlines scientific made by this research. 

Chapter 2 describes the background and challenges associated with wind turbine 

condition monitoring. The state-of-the-art condition monitoring techniques 

researched from published literature that are commonly used for wind turbine 

condition monitoring are presented. Here, particular attention is paid to the 

nonparametric techniques based on SCADA data analysis. 

Chapter 3 introduces and describes the Gaussian Process (GP) method, with a 

focus on regression and outlines how it can be used in the context of wind turbine 

condition monitoring. A comparative study of popularly used covariance 

functions is presented in order to assess the most suitable covariance function for 

GP modelling. Strengths and weaknesses associated with GP modelling are 

discussed briefly. 

Chapter 4 proposes a comparison of the available range of statistical and machine 

learning based analysis methods and assesses which of these are most effective 
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at extracting wind turbine component condition from wind farm SCADA data.  

Advantages and disadvantages of the different approaches are identified. 

Chapter 5 uses the method described in chapter 3 to construct wind turbine 

operational curves based on GP algorithms. The operational curves are 

constructed based on important turbine variables that can be useful in identifying 

faults that affect the power production of wind turbines. Also, the operational 

significance of SCADA data is discussed. Furthermore, GP operational curves 

are compared with binned operational curves with individual bin probability 

distributions to identify operational anomalies. 

Chapter 6 outlines the importance of air density on wind turbine power curve 

accuracy and uncertainty. The core objective of this chapter is to explore whether 

the IEC approach to air density correction gives the most accurate result in case 

of Gaussian Process power curve or not. To do so, four possible air density 

approaches are proposed and analysed with the aid of SCADA datasets that 

manifest significant density variation from the Standard value. 

Chapter 7 extends the methodology described in chapters 3 and 5 to construct a 

fault detection method based on a GP algorithm which then compared with two 

other algorithms based on binning. The proposed methods have been applied to 

the variable pitch wind turbine system. 

Chapter 8 analyses the impact of two additional wind turbine performance 

parameters (blade pitch angle and rotor speed) on improving GP model accuracy 

and uncertainty. Based on this analysis, the most influential turbine parameter is 

selected and tested with GP fault detection algorithm to determine its 

performance in terms of capability to detect in advance (and by how much) signs 

of failures, and its false positive rate. This is explained with yaw misalignment (a 

case study) and then compared with the already constructed GP fault detection 

algorithm of chapter 8. 

Finally, Chapter 9 concludes the research work presented in this thesis and 

highlights some suggestion for future study in this area. 
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1.5 Research Collaborations  

This project has received funding from the European Union’s Horizon 2020 

research and innovation programme under the Marie Sklodowska-Curie grant 

agreement No. 642108 as part of the Advanced Wind Energy Systems Operation 

and Maintenance Expertise (AWESOME) Consortium [3]. The research of this 

thesis includes the joint collaboration of following academic and industrial 

partners, 

 Industrial Secondment - Wood Group (previously known as Sgurr 

Energy), Glasgow. United Kingdom 

 Academic Secondment   - University of Castilla–La Mancha, Spain. 

These two secondments played an essential role in developing a holistic wind 

turbine SCADA based condition monitoring system based on GP.  

1.6. Research Publications 

A number of journal publications and conference papers (including peer-

reviewed) have been published during the period of this project; they are listed 

below with the most recent publications presented first. 

Journals 

1. Ravi Kumar Pandit, David Infield and Athanasios Kolios. Comparison of 

advanced nonparametric models for Wind Turbine Power Curves. 

Submitted to Renewable Power Generation, IET, 2019.                                       

doi: 10.1049/iet-rpg.2018.5728. 

2. Ravi Kumar Pandit and David Infield. Comparative analysis of Gaussian 

Process power curve models based on different stationary covariance 

functions for the purpose of improving model accuracy. Renewable 

Energy, Elsevier, 2019. vol. 140, September 2019, pp. 190-202.               

doi: 10.1016/j.renene.2019.03.047. 

https://doi.org/10.1049/iet-rpg.2018.5728
https://doi.org/10.1016/j.renene.2019.03.047
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3. Ravi Kumar Pandit, David Infield. Incorporating air density into a 

Gaussian Process wind turbine power curve model for improving fitting 

accuracy. Wind Energy, Wiley publisher. 2019;22:302-315.doi: 

10.1002/we.2285.  

4. Ravi Kumar Pandit, David Infield. Comparative assessments of binned and 

support vector regression- based blade pitch curve of a wind turbine for the 

purpose of condition monitoring. International Journal of Energy and 

Environmental Engineering (IJEE), Springer, 2018. Online ISSN: 

2251-6832. doi: https://doi.org/10.1007/s40095-018-0287-3. 

5. Ravi Kumar Pandit, David Infield. Comparative analysis of binning and 

Gaussian Process based blade pitch angle curve of a wind turbine for the 

purpose of condition monitoring. IOP Conf. Series: Journal of Physics: 

Conf. Series 1102 (2018) 012037.doi :10.1088/1742-6596/1102/1/012037. 

6. Ravi Kumar Pandit, David Infield. SCADA-based wind turbine anomaly 

detection using Gaussian Process models for wind turbine condition 

monitoring purposes. IET Renewable Power Generation, vol. 12, no. 11, 

pp. 1249-1255, 20 8 2018 .doi: 10.1049/iet-rpg.2018.0156. 

7. Ravi Kumar Pandit, David Infield. Performance assessment of a wind 

turbine using SCADA based Gaussian Process model. International 

Journal of Prognostics and Health Management (IJPHM), vol. 9, no. 

023, pp.8. doi: https://www.phmsociety.org/node/2492. 

8. Ravi Kumar Pandit, David Infield. Gaussian Process Operational Curves 

for Wind Turbines Condition Monitoring. Energies, vol 11, no. 7: 1631, 

2018.  doi: 10.3390/en11071631. 

9. Ravi Kumar Pandit, David Infield. Comparison of binned and Gaussian 

Process based power curves for condition monitoring purposes. Journal of 

Maintenance Engineering (vol: 2), University of Manchester, 2017. 

ISBN no: 978-1-912505-25-8. 

file:///C:/Users/ngb16104/Desktop/10.1002/we.2285
https://doi.org/10.1007/s40095-018-0287-3
file:///C:/Users/cib07196/AppData/Local/Temp/10.1088/1742-6596/1102/1/012037
file:///C:/Users/cib07196/AppData/Local/Temp/10.1049/iet-rpg.2018.0156
https://www.phmsociety.org/node/2492
https://doi.org/10.3390/en11071631
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Conference proceedings 

 

1. Ravi Kumar Pandit, David Infield. ‘SCADA based nonparametric models 

for condition monitoring of a wind turbine’ on The 7th International 

Conference on Renewable Power Generation. (Status: accepted and in 

press). 

2. Ravi Kumar Pandit, David Infield. QQ plot for assessment of Gaussian 

Process predicted power curve error distribution function. 9th European 

Workshop on Structural Health Monitoring (EWSHM 2018), July 10-

13, 2018 in Northampton, UK. 

3. Ravi Kumar Pandit, David Infield. Power curve modeling using support 

vector machine and its accuracy dependence on kernel scale. Fifteenth 

International Conference on Condition Monitoring and Machinery 

Failure Prevention Technologies (CM2018/MFPT2018), Nottingham, 

2018 (Status: accepted and in press). 

4. Ravi Kumar Pandit, David Infield. Comparative study of binning and 

Gaussian Process based rotor curves of a wind turbine for the purpose of 

condition monitoring. 3rd International Conference on Offshore 

Renewable Energy (CORE 2018), Glasgow (Status: accepted and in press). 

5. Ravi Kumar Pandit, David Infield. Comparative analysis of binning and 

support vector regression for wind turbine rotor speed based power curve use 

in condition monitoring. 53rd International Universities Power 

Engineering Conference (UPEC), Glasgow, 2018, pp. 1-6. 

doi:10.1109/UPEC.2018.8542057. 

6. Ravi Kumar Pandit, David Infield. Using Gaussian process theory for wind 

turbine power curve analysis with emphasis on the confidence intervals. 6th 

International Conference on Clean Electrical Power (ICCEP), Santa 

Margherita Ligure, 2017, pp. 744-749. doi: 10.1109/ICCEP.2017.8004774. 

https://www.ndt.net/search/docs.php3?showForm=off&id=23305
https://www.ndt.net/search/docs.php3?showForm=off&id=23305
file:///C:/Users/cib07196/AppData/Local/Temp/10.1109/ICCEP.2017.8004774
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1.7 Chapter references 
 

1. Article on ‘A guide to UK offshore wind operations and maintenance 2013’ 

published on Scottish-enterprise, 08 November 2013. 

2. Van Horenbeek, A., Van Ostaeyen, J., Duflou, J. R., Pintelon, L., Quantifying 

the added value of an imperfectly performing condition monitoring system–

application to a wind turbine gearbox, Reliability Engineering & System 

Safety, vol. 111, pp. 45-57, 2013.  

3. Advanced Wind Energy Systems Operation and Maintenance Expertise 

(AWESOME). Available online at http://awesome-h2020.eu/. Accessed 30th 

August 2018. 
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Chapter 2 

 

Wind Turbine condition monitoring, trends, challenges, 

and state-of-the-art techniques 

 

Published trends show the wind energy to be one of the fastest growing renewable 

energy sources in the world today, and due to the recent technological 

advancement, wind turbine overall costs have decreased substantially. However, 

as the demand for wind energy continues to grow, there is a constant need to 

reduce operation and maintenance (O&M) costs, minimise downtime and 

improve the reliability of turbines.  This topic is, therefore, an emerging research 

interest. Offshore wind farm O&M is much costlier and more demanding than 

onshore. Condition monitoring is a process commonly used for early detection of 

faults, to minimise downtime and increase the reliability of wind turbines and 

thus ultimately reduce the O&M cost.  

In this chapter, a general overview of wind turbine condition monitoring methods 

(both traditional and SCADA based) and techniques with a focus on offshore 

wind turbines will be presented. A brief overview of new trends and future 

challenges in context with wind turbine condition monitoring is also provided. 
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2.1 Condition monitoring definition, strategies, and advantages 

At this point, it is beneficial to define what is meant by condition monitoring, 

maintenance strategies and describe how these relate to other techniques used in 

the O&M of wind turbines, such as alarm and shut down systems or techniques 

for failure and problem investigation.  

By definition [4], condition monitoring is a process of monitoring the 

performance of a machine, in order to identify potential changes which are 

indicative of a developing fault before machine reaches a stage where 

catastrophic damage occurs. The O&M activities are a leading component cost 

within the total expenditure of a wind farm project and reducing these costs is a 

target for current research and business models. Traditional maintenance 

techniques result in significant downtime and a premature replacement of 

components.  

Robust, cost-effective condition monitoring techniques can improve machine 

efficiency and reduce machine downtime. The maintenance strategies used in the 

wind industry today can be divided into three categories [4, 5] as follows: 

 Corrective maintenance (run-to-failure): This maintenance strategy 

performed after a failure/fault has occurred. This causes significant revenue 

loss and machine downtime; it, therefore, should be avoided wherever 

possible. 

 Scheduled (preventive) maintenance: As the name suggests, this is performed 

at a given time period to prevent the occurrence of failures and therefore 

bypass or at least reduce unscheduled maintenance and associated costly 

downtime. 

 Predictive (condition-based) maintenance: A predictive (condition-based) 

maintenance strategy is based on continuous condition monitoring of the 

machine while in operation in order to maximise power production and 

prevent unexpected catastrophic failures. 
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The cost associated with these three maintenance strategies concerning a number 

of failures is shown in Figure 2.1 from [4]. The prevention cost is high while 

repair cost is low in case of scheduled maintenance since many critical failures 

will not happen. Therefore, scheduled maintenance is effective in minimising the 

number of failures, but it is expensive. With a corrective maintenance strategy, a 

large number of failures will occur, and that leads to high repair costs but low 

prevention cost. A suitable combination of scheduled and corrective maintenance 

strategies can improve the reliability, downtime, and O&M as shown in Figure 

2.4. 

 

                         Figure 2.1: Traditional maintenance strategies cost relationship [4]. 

Unscheduled maintenance costs are a significant contributor to the overall wind 

turbine O&M cost and are generally divided into direct and indirect costs. The 

direct costs include the labour cost, component costs, and equipment cost 

(required for repair or replacement) in addition to the cost of any consumables. 

The revenue lost due to turbine downtime is under indirect cost, and it varies 

depending upon the total repair downtime, including acknowledgement, access, 

diagnosis, labour, and parts mobilisation, and the replacement or repair activity.  

Lost generation during the downtime depends on the wind resource during the 

time period.  Improving the reliability of a turbine that is driven by the objective 

of minimising the O&M cost using more reliable system configurations and 
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components and strategies will have an impact on the levelized cost of 

electricity (LCOE), [6]. LCOE is used to evaluate the life-cycle costs of 

generation of an energy project accounting for the installed capital cost, the 

annual operating expenses, as well as the annual energy production. This metric 

allows calculation of the cost per unit of electricity generated, expressed in 

£/MWh.  

2.2 Wind Turbine Failure Type, Rate and Patterns 

Wind energy is a costly business due to the involvement of expensive electrical 

and mechanical components in which tower (26.3%) and rotor blades (22.2%) are 

the two most expensive components whose combine cost is almost equal to the 

half of the total cost, [7]. The gearbox (12.9%) is the 3rd most expensive 

component and, compared to other sub-assemblies, is prone to have high 

downtime per failure, [8,9]. This is because of the complex repair and 

maintenance procedures involved, especially for offshore wind turbines, [10].  

 

Figure 2.2: Wind turbine components failure rates and the corresponding downtime per 

failure for two surveys of European onshore wind turbines from [11]. 

The failure rate for different turbine components and its corresponding downtime 

per failure are labelled in Figure 2.2. It has been found that the gearbox plays the 
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most problematic role in both surveys regarding downtime, which can be up to 2 

weeks, followed by generator and turbine blade, even though its failure rate is not 

as high as the electrical system and electronic control. 

A wind turbine is a complex system in which specific components have a high 

risk of failure and failure rate varies concerning scale and type. For example, the 

authors of [8,12] carried out a failure analysis for onshore wind turbines, and the 

result suggests the general trend of an increasing failure rate with turbine size. 

Furthermore, Haln et al. [13] presented a survey of 1500 turbines over 15 years 

and found that five component groups, i.e., electrical system, control system, 

hydraulic system, sensors, and rotor blades, are responsible for 67% of failures in 

turbines, as shown in Figure 2.3.  

 

Figure 2.3: Share of the main components of the total number of failures from [13]. 

The machine unavailability due to failures causes revenue loss and power 

production loss, and there is a need to classify the failures in terms of downtime. 

Author of [9] classified the failures into major and minor failures. A frequently 

occurred failure with downtime shorter than 1 day is called a minor failure while 

if the failure frequency is less with downtime longer than 1 day then it is called a 

major failure. Furthermore, it has been found that the minor and major failures 

account for 75% and 25% of the onshore wind turbine failure rates respectively, 
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leading to a respective downtime percentage of 5% and 95%, [9]. Due to the 

logistics and transport issues, the downtime for both failure types increases in 

offshore wind turbines and turbines availability correspondingly declines. 

According to reference [14], the averaged technical availability for Barrow 

offshore wind farm in its first year of operation was as poor as 67.4%. These 

challenges cause expensive unscheduled maintenance, and therefore cost-

effective condition monitoring can play an essential role in optimising power 

performance, minimising downtime, and improving the offshore turbines 

availability. Maintenance strategies such as those proposed in references [15], 

[16] and [17], can be employed to ensure the maximal turbine availability and 

optimal management of the available equipment taking account of the weather 

and the sea state. 

2.3 O&M cost associated with Offshore Wind Turbines  

The initial cost associated with wind energy is high due to the involvement of 

complex electrical as well as mechanical systems, and it is divided into two main 

parts, capital expenditure and operational expenditure (later referred to as 

CAPEX and OPEX). The CAPEX covers the cost related to wind turbine (e.g., 

nacelle module, tower module and rotor module), balance of plant (BOP) (e.g., 

assembly & installation, plant commissioning), financial (e.g. insurance during 

construction, project contingency budget), and land payments costs, and 

relatively easy to calculate while the OPEX cost related to unscheduled 

maintenance, repair, and spare components and difficult to calculate. In general, 

the O&M cost may vary with the types and size of wind turbines. The O&M costs 

are an essential component of the overall cost of wind energy and can vary 

substantially among projects and are generally costlier in case of offshore 

turbines. Increased competition in the wind energy sector has elevated the 

importance of advances in O&M in order to reduce associated costs and to ensure 

that turbines perform at or above expectations, especially in the case of offshore.  
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An offshore wind turbine needs special attention with regards to O&M because 

of its low reliability, remote location. They represent 25% of their lifetime costs 

for onshore wind farms, and 35% for offshore plants [18, 19], reducing these costs 

while improving availability and reliability is the current need for current O&M 

strategies. 

 

Figure 2.4: Global O&M market [21] 

Several research projects on wind turbine reliability such as [20], have adopted 

the “bathtub curve” concept in which a constant failure rate in time during the 

useful lifetime of the wind turbine is assumed. This assumption may not hold true 

because a newly installed wind turbine needs less O&M, but as it gets older, the 

role of condition monitoring will be significant to increase the lifespan and 

efficiency of a wind turbine and offers a new business model to reduce the O&M 

cost. The O&M global O&M report showed the O&M market size for onshore 

and offshore and presented in Figure 2.4.  

Good understanding of turbine parameters such as wind speed, wind shear, and 

pitch angle may show some significant indication of anomalous behaviour and 

help to predict the particular type of failure [21]. Due to the rapid increase in 

offshore wind turbine installation in the UK, the O&M market (Figure 2.5) 
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expected to grow significantly, and costs associated to O&M are substantial and 

can be very large compared to other costs.  

 

Figure 2.5: UK offshore wind O&M cost over the year’s [21] 

2.4 Wind turbine condition monitoring techniques 

Condition monitoring is an O&M tool that helps wind turbine operators to 

maintain and monitor the conditions of machine components and thus better plan 

maintenance. It aims to make an early prediction of failures before it reaches its 

catastrophic stage and allow sufficient time to carry out a maintenance task. 

Swedish Standard SS-EN 13306 [22] defined the monitoring as an activity 

performed either manually or automatically with a sole objective to measure the 

actual state of the item. Significant effort has been made in wind turbine condition 

monitoring in improving turbine availability and minimising downtime. A robust 

condition monitoring approaches traditionally have the capability to detect the 

abnormal state (with locations and severity) caused by system underperformance. 

This section provides an overview of the methods that are commonly used by 

wind operators for turbine condition monitoring and can be classified into two 

categories; i) System physics-based techniques, and ii) SCADA based 
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techniques. These are introduced and described in upcoming sections, with 

particular attention to SCADA data-based modelling. 

2.4.1 System Physics-based techniques 

In system based techniques, detailed knowledge of the engineering science of the 

relevant system, or a sub-assembly require in order to develop an accurate 

condition monitoring approach for wind turbines in which exact anomaly 

signature needed [23]. Physics-based approaches are based on mathematical 

equations that signify the physics of the relevant component to assess its current 

and future health state and thus its performance highly influenced by the 

mathematical models and its capability to accurately represent the failures and 

deterioration phenomena [24]. For example, in references [25,26], physics-based 

techniques proposed and applied to detect gearbox failures. In this technique, 

degradation models are used to estimate long-term behaviour, and this is the main 

advantage associated with this technique [27]. However, in a specific condition, 

system based technique challenging to obtain [26]. 

The knowledge of the physics-based techniques is extended here to include 

methods based on physical system information and measurements that are 

obtained using additional sensors and equipment. As per [28], acoustic emission 

(AE), oil debris analysis, vibration signal analysis, and optical fibre (or blade 

strain measurement) could all play significant roles in wind turbine condition 

monitoring and discussed as follows. 

 2.4.1.1 Acoustic emission (AE) 

Acoustic Emission (AE) mostly used the technique for monitoring the rotor 

blades on which piezoelectric sensors are used to record the release of stored 

elastic energy during deformation and cracking. The energy released is in the 

form of high energy waves which are beyond the audible range and can be 

categorised by their amplitude into the type of damage occurring.  

The AE commonly used for fault detection in gearboxes, bearings, shafts, and 

blades, and its advantages include high signal-to-noise ratio (SNR) and large 
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frequency range. Moreover, compared to classical vibration-based methods, AE 

is considered to be more robust for the low-speed operation of turbines as 

suggested by [29]. Author of [30] found that the AE technique strongly related to 

vibration technique and many research was carried out on the combined use of 

AE and vibration techniques. For example, the authors of [31] presented the 

results of a combined AE and vibration monitoring for condition monitoring of 

turbine gearbox and generator shaft. The Risø DTU National Laboratory for 

Sustainable Energy [32] used the AE technique based on strain measurement to 

detect and locate small laminate flaws in turbine blades. AE signals are used in 

the past to detect the possible blade fatigue in critical areas, for example, the blade 

root, and briefly described in [33]. However, AE is an expensive technique and 

requires a very high sampling rate. Another disadvantage of AE is the attenuation 

of the signal during propagation which means to get an accurate result; AE sensor 

needs to be located as close to its source as possible which makes practical 

constraint in applying AE to certain wind machines [34]. 

2.4.1.2 Oil debris analysis 

Oil debris analysis technique is an effective method for the early detection and 

locating the damage in bearing and gear elements in gearboxes [35] and past, it 

is combined with vibration analysis technique to give better accuracy in 

identifying gearbox failures [36]. Oil debris analysis technique used for two 

objectives; a) to maintain the quality of lubricant oil against the contamination by 

parts, moist, and b) to indicate and locate the developing faults in the mechanical 

components of the gearbox. The gearbox lubricant oil if have debris then it likely 

an indication for wear or damage of gearbox components, where a particle of 

different shape and material signify the different types of damage along with its 

location.  

The oil debris analysis techniques can be classified into two categories: a) online 

analysis (provide instantaneous feedback of condition of the machine), and b) 

offline analysis (where data collected at regular intervals with sample collection 
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for machine condition monitoring purposes) [37]. The online analysis is a popular 

technique since it improves the reliability and accuracy of the analysis where 

failures developed rapidly or have limited accessibility [38].  

Although, an oil debris analysis only widely used technique for detecting cracks 

in the internal part of the gearbox, however, suffers from two disadvantages. First, 

the equipment used for online oil analysis is expensive, and second, it cannot 

identify the failures outside the gearbox. Because of these reasons, offline oil 

analysis is often used [30, 39]. 

 2.4.1.3 Vibration signal analysis 

The vibration analysis considered to be the most widely used condition 

monitoring technique for rotating equipment and started finding application in 

the blade and tower monitoring [30]. In vibration analysis technique, 

accelerometers are used to measure the forces being applied to the component, 

and these are changes over time with frequency. It is used to monitor gearbox, 

bearing and shaft components of turbines but subject to sensor failures and has 

limited application for low-speed rotation [40]. Furthermore, it may not be ideal 

for all wind turbine types and faults [41]. The turbines condition monitoring 

techniques with vibration signal analysis are Standardised in ISO10816 [42], 

which define the positioning and use of sensors. Figure 2.6 describes the principle 

of vibration signal analysis technique and show how the time waveform of a 

vibration signal is decomposed into its spectral components and how 

characteristics frequencies in the resulting spectrum can be related to machine 

components.  
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Figure 2.6: Principle of vibration signal analysis condition monitoring technique [43] adopted 

from SKF Vibration Diagnostics Guide (2000) [44] 

The author of [36] present a report on extensive overview of vibration signal 

analysis techniques in context to wind turbine drivetrain condition monitoring 

including the Fast Fourier Transform, cepstrum processing (uses inverse Fourier 

Transform), bearing envelope analysis, and wavelet transforms, which are 

competent in catching specific frequency components under varying rotor speed 

due to their inherent ability to provide better frequency resolution at low 

frequencies and better time resolution at high frequencies [45]. Furthermore, the 

time series analysis of the vibration signals is used for anomaly detection, for 

example, in reference [10], the development of an impending gearbox bearing 

failure is indicated by an increasing trend of the time series representing the 

enveloped high-speed shaft axial vibration amplitude signal. 

2.4.1.4 Blade strain measurement 

Due to the force applied, the material experiences deformation. This change is 

deformation defined by strain. A device called strain gauges is used in strain 

measurement, and such measurement predominantly applied for load monitoring 

and lifetime testing for rotor blades; also used for damage detection [46,47]. 

Strain gauges placed randomly on the critical parts of the blade, and the finite 
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element method is used to process the captured data [48]. The distribution varies 

according to the number of transducers. In reference [49], it has been pointed 

out that in order to detect small damages, a large number of sensor required. In 

the long term, strain gauges are not robust, and hence there is a need for a more 

robust sensor [50] for example, Kreuzer [51], Bang et al. [48] and Schroeder et 

al. [46] explored the development of a high-speed-fibre Bragg-grating-based 

sensor array system for strain-based deflection shape estimation of wind turbine 

structures. 

2.4.2 SCADA based Wind turbine condition monitoring techniques 

Compared to system physics techniques (e.g., vibration signal analysis, strain 

gauge measurement, acoustic emission and so on) that require in-depth 

engineering knowledge, SCADA based modelling is relatively easy to construct 

and generalise. SCADA based condition monitoring is a cost-effective approach 

in which already collected data of turbines are used to detect the degradation of 

component health and identify the associated risk of failures.  

2.4.2.1 𝒌-nearest neighbor’s regression (𝒌-NN)  

k-nearest neighbour regression (or k-NN) is a non-parametric machine learning 

approach that uses the average of k closest observation in training dataset to give 

an estimate. The k-NN algorithm can be used for classification and regression 

problems [52, 53]. k-NN has been widely applied to forecasting problems such as 

wind speed forecasting [54], electricity price forecasting [55], and solar power 

forecasting [56].  One of the unique features of k-NN is that instead of depending 

on data pattern, it compares the new samples to instances which are saved in the 

training phase [57]. A new value is given which is equal to the average of the 

value of its 𝑘 closest neighbors. To calculate the distance between classification 

samples and train samples, the Euclidean distance used although some 

researchers also used Manhattan distance, correlation distance. Author of [58] 

compared these distances and found that the accuracy of Euclidean distance is 
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96% while Manhattan distance is 95.9% and correlation distance accuracy stands 

at 95.1%; suggest that all distance gives almost same accuracy results. It should 

be noted that the accuracy of the k-NN model significantly depends on k value. 

For example, if the k value is too small then it fragile to the noise and if k is too 

large, then it overfit the data points. Therefore, appropriate choice of k value is 

the key of the robust k-NN algorithms, for instance, the author of [59] found that 

k =250 is being suitble for wind turbine power curve modelling based on k-NN. 

The k-NN is a lazy learning approach where the function is only approximated 

locally, and all computation is deferred until classification.  

The 𝑘-NN is an instanced-based method hence its training time is very small and 

hence more efficient in anomaly detection but it is computationally intensive and 

processing time depends on the size of the training data and on the parameter 𝑘. 

2.4.2.2 Nonlinear state estimation technique (NSET) 

The nonlinear state estimation technique (NSET) is a non-parametric method, 

proposed by Singer [60] and currently popularly used in nuclear power plants 

such as for sensor calibration, lifespan predication of electric components and 

other research into component ageing [61]. NSET is also gaining popularity in 

condition monitoring and or other applications of a wind turbine. In [62], NSET 

has been used to model turbine tower vibration for blade angle symmetry 

detection. The blade angle symmetry is a common fault which leads to critical 

fatigue damage hence early detection help to limit fatigue damage and improve 

the turbine efficiency. Also, this paper concluded that condition monitoring 

would improve significantly if the information from the vibration signals is 

accompanied by other relevant SCADA data, for example, power performance, 

wind speed and rotor loads. Furthermore, in [63], NSET method used for wind 

turbine condition monitoring for a SCADA based system. 
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NSET and Artificial Neural Network (ANN) both are the data-driven approaches. 

However, there is a considerable difference between these two methods as 

described below, 

 ANN model structure is complex and difficult to determine. With simple ANN 

structure, modelling activity would be weak while with complex ANN 

structure leads to an over-fitting problem. However pre-determined structure 

does not require for NSET due to its non-parametric properties as 

demonstrated by [64]. 

 In order to train the model, ANN uses historical data. It transfers the 

information from training data into the weights. This weight us constant in 

nature and has no meaning while in case of NSET, weights describe the 

similarity between the new input vector and vectors already in the memory 

matrix. 

2.4.2.3 Clustering 

Clustering is a parametric, machine learning algorithm where a set of 𝑛 

observations divided into 𝑔 groups, called clusters, so that members of the same 

group are more alike than members of different groups. A self-organizing feature 

map (SOFM) is a good example of the unsupervised clustering technique that 

forms neurons located on a regular grid, usually in one or two dimensions [65]. 

Catmull [66] and Kim et al. [67] were the first to use an artificial neural network 

(ANN) SOFM technique to wind turbine SCADA data where clusters are used to 

rearranging neurons on a regular grid during the training process in a way that 

neighbouring neurons denote similar input data. To visualize the clustering, a 

unified distance matrix can be used and in combination with projections of 

parameters, interpretation of the clustering can be started. To detect the 

abnormality, authors of [66] train the model and proposed the calculation of the 

distance between new input data and the best matching neuron. In this study, 

generator failures are used as a case study and result demonstrate constructed 
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algorithm capabilities to detect failures early using the turbines data. 

Furthermore, the author of [67] used a training dataset, which included failures 

and then they were able to select successive turbine failures to interrelated 

clusters. 

The author of [68] used ANN SOFM to improve the Reliability and 

Maintainability of Wind Turbines in which based on clustering results, O&M 

strategies are planned for a group of wind turbines in contrast to doing the same 

work for the individual turbine. Zhang and Kusiak [69] proposed three SCADA 

(of 10-minute sampling interval) based approach for identifying abnormal 

vibration in the time domain. The modified 𝑘-means clustering algorithm used in 

first vibration monitoring model. The k-means algorithm grouped data into 

clusters by examining their similarity and Euclidean distance used to calculate 

the distance between data and cluster centroids. The clusters were then designate 

as the normal or abnormal status of the turbine based on error reports. The control 

charts are used to construct the models for monitoring of turbine vibration and 

extended model applications in detecting abnormal drive train and tower 

vibration of a wind turbine. 

2.4.2.4 Artificial Neural Networks (ANNs) 

Artificial neural network (ANN) is a non-parametric model inspired by biological 

nervous system emulate the natural intelligence of the human brain [70] and 

extensively used in wind turbine condition monitoring. The basic structure for 

ANN modelling includes one input layer, a variable of hidden layers, and one 

output layer. Each layer includes a large and different number of neurons, which 

are connected by all inputs or neuron output from the preceding layer in which 

each neuron consists of a nonlinear transfer function to merge the inputs and an 

activation function deciding if the output is generated [71,72]. The primary 

learning methodology of ANN is all about changing the input weight [73]. 
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Authors of [74] presented a GP-ANN based technique for calculating the power 

curve of any wind turbine that depends merely on a minimal group of input 

variables such as hub height wind speed, and wind direction from the turbine 

nacelle.   The author used GP for filtering and or pre-processing the SCADA data 

of wind turbine, and after filtration, the model trains ANN with a different number 

of neurons and select the final configuration considering the RMSE and the 

annually estimated energy error, both are calculated on the validation dataset. 

They carried out a comparative analysis of this proposed technique with other 

parametric and non-parametric methods and resulted that the GP-filtering 

significantly improves the performance of all methods. Overall, the combination 

of the GP-filtering with ANN model offers an automatic and accurate method for 

calculating the power curve, with a significant improvement (25%) in RMSE of 

predicted power as compared to the Standard method [74]. 

F. Pelletier et al. [75], the multistage approach presented for power curve 

estimation where air density and wind speed are used as input in order to obtained 

normalised power output in the first stage then wind speed data turbulence 

intensity being used to train the second ANN stage. This method produced better 

results compare to parametric, discrete and non-parametric models.  

Pramod Bangalore et al. [76] present a self-evolving maintenance scheduler 

(SEMS) framework for maintenance management of wind turbines and proposes 

an ANN-based condition monitoring approach based on SCADA data. The 

majority of failures in the gearbox originated from the gearbox bearings and 

considered to be a significant contributor toward downtime, and early detection 

of it improves the machine downtime and hence used by the author as a case 

study. SCADA data from onshore wind turbines (of rated 2 MW) located in the 

south of Sweden used by authors. The result suggests that the ANN-based 

condition monitoring technique is capable of indicating an anomaly in advance 

with high accuracy and compared with previously publishing similar techniques, 

the main strength of the proposed model is its simplicity in terms of application. 
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Furthermore, Brandão et al. [77, 78] proposed FSRC ANN technique to the 

gearbox and generator fault detection in Portuguese wind farm (have 13 turbines 

with 2 MW rated power) and a USA wind farm (have 69 turbines with 1.5 MW 

rated power) but the author did not provide more details about the setting. 

Zhang and Wang [79] used ARX ANN approach to the main shaft rear bearing 

temperature in direct-drive wind turbines. Approximately based on one year of 

SCADA data from two 3 MW wind turbines in a 17 wind turbine farm, a failure 

in one turbine was detected three-month advance with this model where power, 

nacelle temperature was used as output while wind speed taken as inputs. They 

set the anomaly threshold to 1.5°C for the residuals and was verified with the 

second turbine normal operation. Furthermore, reference [80] provides the 

detailed and extended application of ANN model for wind turbine condition 

monitoring.  

ANN model is robust in the nonlinear statistical identification, but special care 

needs to be given for relationship learning during model construction and training 

stage. Issues like local minima in gradient descent algorithm and extrapolation 

limitations in model estimation have already gained awareness for different ANN 

approach applications. Author of [81] studied the local minima issue of neural 

networks in using the backpropagation algorithm and proposes some sufficient 

conditions for robust solutions. Reference [82] presented an insight into the ANN 

model structure and explained its limited extrapolation capability.   

 2.4.2.5 Fuzzy system 

In recent years, the application of fuzzy system on wind turbine condition 

monitoring has increased significantly.  A typical fuzzy system inspired by fuzzy 

logic which is an extension of multivalued logic based on if-then rules (i.e., the 

degree of truth instead of Boolean logic (true/false) [83]. The fuzzy logic is a 

convenient way to map an input space to an output space and input mapping to a 

fuzzy value is defined by the membership functions (MF). 
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Meik Schlechtingen et al. [83] presented a method to monitor wind turbine 

SCADA data, via normal behaviour models based on fuzzy logic whose sole 

objective is to detect trends and patterns in SCADA data and predict possible 

failures. The Adaptive Neuro-Fuzzy Interference Systems (ANFIS) technique 

can signify the nonlinear signal relations by introducing a set of fuzzy rules and 

tuning the Membership Function (MF) parameters in a training stage, and they 

used this technique for condition monitoring purposes. They used fuzzy logic in 

anomaly/prediction error pattern interpretation and fund that root cause diagnosis 

can be implemented intuitively. This gives an opportunity for automated fault 

diagnosis after specific rules are achieved. Furthermore, the author builds ANN 

(analogue to the one described in [84]) model in which only five runs with random 

weight initialisations are performed. The comparative analysis of ANN and 

ANFIS shows that both approaches performance is similar in terms of standard 

deviation, but training time is smaller in ANFIS as compared to ANN. The ANN 

takes a long time to train the model due to its necessary trial and error procedure. 

However, the appropriateness of the proposed model is dependent on the 

availability of a broad variety of different SCADA data to set up the ANFIS 

models.  

Li et al. [85] proposed an improved fuzzy synthetic model based on a real-time 

condition assessment technique of a grid-connected wind turbine generator 

system (WTGS) to improve the operational reliability and optimise the 

maintenance strategy. They proposed an improved fuzzy synthetic condition 

assessment method which utilises the concepts of deterioration degree, limited 

dynamic values and variable weight calculations of the assessment indices. The 

850 kW WTGS data are used in a proposed fuzzy synthetic method for real-time 

condition assessments. The proposed model is then compared with a traditional 

fuzzy assessment method in which constant limited values and constant weights 

are taken up. The comparative analysis of these two methods shows that the 

proposed model able to predict the change in operating conditions and has a better 



 
50 | P a g e  

 

coherence with real operating conditions than that of a traditional fuzzy 

assessment technique. 

Other techniques such as probabilistic, trend analysis and turbines operational 

curves based are significantly being used for the wind turbine condition 

monitoring. These techniques, in general, make condition monitoring robust and 

reduces the O&M cost. In upcoming chapters, these techniques state of the art in 

context with condition monitoring would be discussed. 

2.5 Why use SCADA data?  

Supervisory control and data acquisition (SCADA) system is a communication 

and control system used for monitoring, operation and maintenance of various 

systems such as wind power generation or power systems. The power industries 

have utilised SCADA information for over 35 years, and in wind turbine, SCADA 

role is to supervise basic turbine operation such as the turbine cut-in, cut-out and 

emergency stop [86]. A SCADA system is designed to supply data related to 

operational status but not necessarily the health of a wind turbine (WT).  

All modern wind farms are equipped with SCADA systems that record vital 

operational parameters, broadly classified into controllable parameters (e.g. blade 

pitch angle and generator torque), and non-controllable parameters (e.g. wind 

speed, ambient temperature) and performance parameters (e.g. power, generator 

speed, rotor speed). SCADA systems typically provide 10-minute averaged 

signals, often with associated standard deviation and maximum and minimum 

values. This recorded information contains continuous time observations that can 

be utilised for overall turbine performance monitoring as well as play a significant 

role in identifying component faults, at no additional cost. Kusiak and 

Wenyan [87] constructed SCADA based model to detect the fault at three 

different levels: (1) fault and no-fault prediction; (2) fault category (severity); and 

(3) the specific fault prediction;  results show that faults can be predicted 50-60 
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minutes in advance at all three levels. However, the time period is short and does 

not give enough time to the operator to carry out maintenance actions.  

 

Advantages 

 The traditional condition monitoring system (CMS), for example, vibration 

analysis and oil debris detection, require expensive sensors. The additional 

cost can be significant considering the number of turbines typically deployed 

in offshore wind farms and also costly expertise is generally required to 

interpret the results. In contrast, SCADA data is already in place and can add 

real value to the condition monitoring with little or no cost to the wind farm 

operator.  

 With the help of SCADA data, incipient wind turbine operational faults or 

failures can be detected before they evolve to catastrophic failures and so that 

preventative maintenance or corrective action can be scheduled in time, 

reducing downtime and potentially preventing more extensive damage. Use of 

SCADA should significantly reduce operating and maintenance cost and 

increase reliability. The author of [73] reviewed SCADA based wind turbine 

condition monitoring focusing on approaches which have already proved their 

ability to detect anomalies in data from real turbines. 

 Wind turbine SCADA data comprises more than 100 different signals, ranging 

from the timestamp, calculated values, set point, measurements of 

temperature, current, voltage, wind speed, power output, wind direction and 

so on. These massive volumes of SCADA data make analysis effective and 

can be linked with traditional CMS. 

 Disadvantages 

 SCADA data typically record 10-minute averaged data which makes diagnosis 

results less accurate. However, this issue in analysis depth could be minimised 
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by the width of the signal that is given by SCADA data across the key 

components as demonstrated by [86].  

 The wind turbine SCADA system does not collect all of the information 

necessary to conduct a full turbine health assessment [73]. 

 Sensor failures and data malfunction cause corrupt SCADA data and errors 

that make model analysis inaccurate and confusing and hence should not be 

used in the training stage. To obtain the best results, prior pre-processing of 

these data points is essential.  

 SCADA data pre-processing 

The shutdown of turbines for some reason other than anomalous operation and null 

entries or confusing data makes SCADA data erroneous which can affect the model 

accuracy and further analysis. Therefore, it is important to remove these misleading 

or confusing informations before using this data for further analyses. Wind 

industries remove these SCADA errors manually. For example, in ref. [88], authors 

proposed a technique based on visual inspection of the power curve and can be 

removed before further model construction and data analysis. However, proposed 

techniques accuracy suffers due to the involvement of massive SCADA data. The 

various statistical approach has been proposed that removes these outliers before 

the development of models. A probabilistic technique [89] based on the copula-

based joint probability model for wind turbine power curve outlier rejection is 

proposed. In [90], authors used alarm logs signals recorded by the SCADA system 

to detect the outliers where multivariate curve techniques are being used. However, 

in many SCADA system, alarm logs are not being stored accurately; hence this 

method may not work in such cases. Nevertheless, an appropriate method for 

SCADA data preprocessing is important for effective model constructions.  

The SCADA system records an extensive amount of wind turbines data which are 

generally divided into wind parameters (e.g., wind speed and wind deviations), 

performance parameters (e.g., power output, rotor speed, and blade pitch angle) 
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vibration parameters (e.g., tower acceleration and drive train acceleration) and 

temperature parameters (e.g., bearing temperature and gearbox temperature) [91]. 

Many researchers used this information to preprocessed SCADA data manually 

such as the criteria are outlined in [84], for example, abnormal wind speed, 

timestamp mismatches, out of range values, negative power values, and turbine 

power curtailment are used to remove misleading data. This method does not 

make SCADA data error free but minimizes its impact significantly. Hence, this 

methodology would be used for SCADA data filtration in this thesis. 

For wind farm owners and operators, reducing the O&M cost and maximising the 

availability are the main priorities and therefore SCADA based condition 

monitoring can be useful in this regards where failure can be detected earlier 

allowing sufficient time for maintenance and minimising machine unavailability 

and repair costs.  Numerous techniques have been successfully used SCADA data 

for wind turbine condition monitoring (see section 2.4) where inter-relationship 

between critical operational parameters have been explored for effective anomaly 

detection algorithm or performance monitoring. 

2.6 Chapter conclusions  

The importance of performance and or condition monitoring in wind turbines are 

briefly presented in this chapter along with current trends and challenges. Different 

condition monitoring techniques are briefly described in this chapter, and the 

selection of a particular technique depends on the nature of the available data and 

expert domain knowledge. Traditional condition monitoring techniques (system 

Physics-based) are sophisticated and requires expensive sensors. Furthermore, the 

cost to maintain their performance is also higher. Therefore, wind industries are 

shifting their focused towards cost-effective SCADA based technologies for their 

wind turbines performance improvements.  

Numerous research has been carried out on SCADA based condition monitoring, 

but its commercial applications are limited because wind farm operators remain 
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sceptical about the benefits of SCADA based technologies. In the last decade, the 

involvement of the SCADA system for wind turbine applications are significant. 

Various parametric and nonparametric (including machine learning) approaches 

have been using SCADA data for wind turbine performance or condition 

assessment.  It has been found that nonparametric techniques perform better than 

parametric models due to their robustness. Nonparametric techniques such as 

ANNs, Fuzzy system, k-NN and NSET have popularly used wind turbine condition 

monitoring and are well described in this chapter. 

The SCADA data recorded in the system contains errors, for example, time 

mismatch, negative power values and need to filter out for proposed models 

accuracy. Many researchers proposed different techniques and are well described in 

section 2.5. SCADA data pre-processing described in [84] are adopted in this thesis 

because it is simple, effective and uses already available information without 

extra mathematical computations. 

Importance of SCADA datasets are presented in this chapter that contains the 

information about the operational status of wind turbines. Therefore, SCADA 

based condition monitoring approach is being proposed for monitoring the 

continuous performance of turbines where the extensive applications of GP (a 

nonparametric, machine learning method) is being explored and outlines SCADA 

based GP models strength and weakness as compared to available nonparametric 

approach (including traditional methods) 
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Chapter 3 

 

Introduction to Gaussian Processes models  

Gaussian Processes (GPs) are very general non-linear multivariate probabilistic 

models based on a generic supervised machine learning approach; they are 

commonly used to address problems related to regression and probabilistic 

classification. GPs provide an attractive data analysis framework and the basis of 

a potentially effective automated fault detection system for the wind sector and 

hence recently have started to find application to wind turbine condition 

monitoring. Due to their simplicity and ease of construction, GP models are also 

applied to solving problems related to forecasting, anomaly detection and fitting 

related applications. 

In this chapter, a brief history of GPs models is outlined and then following a 

presentation of GP theory and the role of covariance function; specific GP 

algorithms will be discussed. In GP models, training is undertaken to select the 

best hyperparameters which define the covariance function. Therefore, both the 

basis functions and their prior distribution are simultaneously specified by choice 

of covariance function. Depending upon the given problem, the selection of 

covariance function is made independently of the basis functions, and therefore 

performance comparison of widely used covariance functions is essential for 

effective GP modelling.  Hence in this chapter, comparative studies of popularly 

used covariance functions will be presented with their respective strengths and 

weaknesses.  
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3.1 A brief history of Gaussian Processes 

A Gaussian Process is a stochastic process, simple to implement, flexible and 

fully multivariate. It is a probabilistic model and has a general class of probability 

distributions on functions. GP models are named after German mathematician 

Carl Friedrich Gauss because a GP is based on the notion of the Gaussian 

distribution. GP models are not new and have been studied and used for centuries. 

For example, the renowned ‘Wiener process’ is a continuous–time stochastic 

process and is a particular type of GP [92].  

Gaussian Processes were first applied for time series prediction. Work in this area 

dates back to the 1940s [93]. Starting from 1970’, GPs have been used widely in 

the fields of geostatistics and meteorology. In statistics, GPs were used to solve 

slightly more general multivariate input regression problems [93]. In 

geostatistics, prediction using a GP is called ‘kriging’ and is a method of 

interpolation. Kriging is named after the South African mining engineer D. G. 

Krige by Matheron in 1973 [94]. Williams and Rasmussen [95] in 1996’ first 

described GPR in a machine learning context which is partly inspired by the 

relationship shown by Neal, [96], between GP models and neural networks. There 

has been significant work on GPs to solve various complex issues across a wide 

field of application. Rasmussen and Williams [95], published a book on GPs in 

the context of machine learning, and most of the material covered in this chapter, 

and a lot more, can be found there. 

The GP concept can be classified according to two distinct applications: 

classification and regression. This thesis is concerned with the more specific use 

of GP models for prediction, forecasting, and anomaly detection for wind 

turbines. Therefore, Gaussian Process regression (GPR) is relevant for 

performance and or condition monitoring purposes.  
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3.2 Gaussian Process versus Gaussian distribution 

GPs are called a non-parametric because they assess how all the measured data 

are correlated instead of trying to fit the parameters of selected basis functions.  

          A GP is a collection of random variables having a property that the joint 

distribution of any of its subsets is multivariate Gaussian. Also, it should be noted 

that there are differences between a Gaussian Process and Gaussian distributions 

which are summarised in Table 3.1. 

Gaussian distribution Gaussian process 

 A Gaussian distribution is a 

distribution over vectors. 

 A Gaussian process is a distribution 

over functions. 

 A mean and a covariance fully 

specify it: 

                      𝑥~Ɲ(μ, ∑)     

The position of the random variables 𝒙𝒊 

in the vector plays the role of the index. 

 Mean and covariance functions fully 

specify it: 

                  f  ~Ɲ(𝑚, 𝑘)     

The argument 𝑥 of the random function 

𝑓(𝑥) plays the role of the index. 

           Table 3.1: Difference between Gaussian distribution and Gaussian process [95, 97]. 

3.3 Gaussian Process theory 

A Gaussian Process is a multivariable probabilistic based generic supervised 

machine learning approach that addresses problems related to regression and 

probabilistic classification. Notably, a GP is a stochastic process that has 

Gaussian-distributed finite-dimensional marginal distributions defined over the 

distribution of functions, i.e. each output from the GP is itself a function. GPs are 

widely used in probabilistic regression problems thanks to their flexibility and 

simplicity of construction. 
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A GP, in essence, is a non-parametric generalisation of a joint normal distribution 

for a given potentially infinite set of variables, and it is mathematically defined 

by its mean and covariance functions (or kernel) as given in equation (3.1), 

                                                  𝑌 ~  Ɲ ( µ, ∑)                                                         (3.1) 

where, µ is the mean function, and ∑ is the covariance function that has an 

associated probability density function: 

        𝑃 =
1

(2𝜋)
𝑛
2 |∑|

1
2

 𝑒𝑥𝑝 {−
1

2
(𝑥 − 𝜇)𝑇 ∑−1(𝑥 − 𝜇)}                                         (3.2) 

Where |∑| is defined as the determinant of ∑, 𝑛 is the dimension of random input 

vector 𝑥 , and µ is the mean of vector 𝑥. The term under the exponential i.e.  

1

2
(𝑥 − 𝜇)𝑇 ∑−1(𝑥 − 𝜇)  is an example of a quadratic form.  

In GP models, the mean function is set to zero by appropriate renormalising of 

the variable x. Hyperparameters that determine the covariance function 

characterises GP models; these have a substantial impact on the posterior model 

accuracy. A GP model estimates these parameters by maximising the marginal 

log-likelihood of the model which depends on the nature of data, see [95]. The 

proper optimisation of these hyperparameters ensures GP model accuracy, and 

particular in this work, power curve model accuracy, and is described as follows. 

For a given training dataset, A = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, … … , 𝑁} of 𝑛 observations, 

calculated values of mean and variance are required in order to model the GP 

power curve. Here 𝑥 is the input vector of dimension D , and 𝑦 is the scalar output.  

The given set of input datasets is denoted by a 𝐴 × 𝑛 matrix.  Suppose for a given 

𝑁   training data input and output pairs (𝑋, 𝑦), we can define the relationship as 

𝐴 = (𝑋, 𝑦). The GP regression is used to solve the relationship between input and 

target values which is modelled as: 

                                                 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖                                          (3.3) 



 
69 | P a g e  

 

The above equation is theoretically used to define the underlying function of the 

data modelled where 𝑥 are values from the training datasets and 𝜖 is Gaussian 

white noise of variance 𝜎𝑛
2 such that, 𝜖 = 𝑁(0, 𝜎𝑛

2).  And the prior to y becomes: 

                                             𝐸|y| = E|𝑓 + 𝜖| = 0                                          (3.4) 

                                               𝑐𝑜𝑣 |y| = 𝐾|𝑋, 𝑋| + 𝜎𝑛
2𝐼                                      (3.5) 

The prior distribution is useful in providing essential information about the 

uncertain parameters. This prior distribution with the probability distribution is 

used to develop the posterior distribution, which is helpful for inference and in 

any decisions involving uncertain parameters [95]. To estimate the output f, for a 

new input 𝑥∗, the distribution can be written as: 

                            (
𝑦
𝑓∗) ~𝑁 (0, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 𝑘(𝑋, 𝑥∗)

𝑘(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)
])                       (3.6) 

where 𝑘(𝑋, 𝑥∗) = 𝑘(𝑥∗, 𝑋)𝑇 = [𝑘(𝑥1, 𝑥∗), 𝑘(𝑥2, 𝑥∗), … . . 𝑘(𝑥𝑛, 𝑥∗)], which is for 

simplicity denoted by 𝑘∗. Then, from the joint Gaussian distribution, the 

estimation of target values is given by: 

                                         𝑓 ∗̅̅ ̅̅ = 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦                                        (3.7) 

                     𝑉𝑎𝑟[𝑓 ∗] = k(𝑥∗, 𝑥∗) − 𝑘∗
𝑇𝑘∗(𝐾 + 𝜎𝑛

2𝐼)−1                            (3.8) 

The obtained posterior variance (𝑉𝑎𝑟[𝑓 ∗]) is inversely proportional to the 

distance between test and training data points while the estimation of the mean 

(𝑓 ∗̅̅ ̅̅ )  is a linear combination of the output 𝑦 in which linear weights are defined 

as 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1. The (𝑓 ∗̅̅ ̅̅ )  gives the estimated values of power (in case of 

power curve) while 𝑉𝑎𝑟[𝑓 ∗]  yields variance associated with GP models and it 

is useful in calculating confidence intervals (CIs). The CIs measures the 

uncertainty and significant on constructing fault detection algorithms and these 

are well described in upcoming chapters. 
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3.4 Advantages and disadvantages of Gaussian Process models 

Gaussian Processes not only relax the assumption of linearity in the regression 

parameters but also give freedom where we do not need to specify a precise 

functional form for the relationship between predictor and response variables. 

The advantages of GP are summarised as follows, [95]. 

Advantages  

 GP models, not only estimate predicted values but also come with intrinsic 

confidence intervals. These confidence intervals signify the uncertainty 

associated with the prediction and are very useful for anomaly detection 

which in the intended application are wind turbine faults. 

 Easy to interpolate training data. 

 GP models are very versatile due to the abundant choices available for 

covariance function for any given problem, and the selection of 

hyperparameters. 

 Provide smooth nonlinear models. 

 With a GP, the predicted values are interpolations between the training data 

points that conform to the chosen covariance functions, so that the nature 

of the interpolation is controlled by the selection of covariance function. 

 GPs can be easily extended and incorporated into hierarchical Bayesian 

models. 

Uncertainty assessment is the key to developing a fault detection algorithm based 

on the GP. The uncertainty in the GP expressed by its Confidence Intervals (CIs) 

whose robustness is directly related to covariance function and will be discussed 

in upcoming sections. 
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Disadvantages 

GP theory described above suggests that posterior computation in GP regression 

is a trivial matter, but there are two main hurdles involved that are described as 

follows.  

 The computation of the mean and covariance in the n-variate normal 

conditional posterior distribution for 𝑓 ∗ involves matrix inversion that requires 

O(n3) computation. The posterior conditional distribution for a given 

observation mathematically is defined in [98], and there is a covariance matrix 

component, as given by equation (3.9), associated with the inverse matrix 

operation which leads to the mathematical challenge of inverting an 𝑛 × 𝑛 

matrix (and this goes approximately with O(n3) , where 𝑛 is the number of data 

points). This computation needs to be repeated for each step with changing 

hyperparameters. If 𝑛 is too large, then the computation of the  𝑛 × 𝑛 matrix 

becomes problematic and leads to GP model inaccuracy. 

      |𝑌𝑥  =  𝑦𝑥  ~ 𝐺𝑃 [  
 µ(𝑥∗)  ∑(𝑥∗, 𝑥)  ∑(𝑥, 𝑥)−1 (𝑦𝑥 −    µ(x)) ,

∑(𝑥∗, 𝑥∗) − ∑(𝑥∗, 𝑥)  ∑(𝑥, 𝑥)−1  ∑(x, 𝑥∗)
   ]             (3.9) 

 The prediction cost per test for mean (𝒇 ∗̅̅ ̅̅ ), variance (𝑽𝒂𝒓[𝒇 ∗]) and 

(𝑲 + 𝝈𝒏
𝟐𝑰) are 𝑶(𝒏), 𝑶(𝒏𝟐) and 𝑶(𝒏𝟑) respectively and these are 

computationally expensive especially in dealing with big datasets. 

State-space representations of GPs are being introduced to address this cubic 

problem, [99,100]. Moreover, in [101], two parallel GP regression methods that 

exploit low-rank covariance matrix approximations for distributing the 

computational load among parallel machines are being used to solve these 

problems, but these still require high processing power and computational cost in 

dealing with large datasets. The accuracy of a GP model depends upon the 

quantity and quality of the data. For example, to model a wind turbine power 

curve, a low number of power-wind speed pairs may not give a smooth power 
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curve while a high number is not desirable because of the numerical challenge of 

calculating the GP, [102]. 

3.5 Gaussian Process covariance functions 

Covariance functions are commonly known as positive semi-definite kernels or 

Mercer’s kernels, [103] and considered to be the driver of the fitting quality of 

the models along with hyperparameters (described above). The covariance 

function is the decisive ingredient in Gaussian Process modelling since it encodes 

the assumptions about the function which we wish to learn. A covariance function 

describes the dependency of two variables and is the core of the GP model; it 

signifies the similarity between two points and hence determines closeness 

between two points.  

The basics properties of a covariance function are:  

 It must be positive semi-definite. 

 It can be non-stationary.  

 It can be the sum (or product or linear combination) of other covariance 

functions, e.g., can use a different covariance function for each unique 

sensor modality or data type (vector, sequence, image data). 

The reliability of GP regression is dependent on what and how well we select the 

covariance function. The covariance matrix, K, gives the variance of each 

variable along the leading diagonal, and the off-diagonal elements measure the 

correlations between the different variables and are given by:     

                                     𝐾 =  [
𝑘11 ⋯ 𝑘1𝑛

⋮ ⋱ ⋮
𝑘𝑛1 ⋯ 𝑘𝑛

]      where 𝑘𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) 

𝐾 is of size 𝑛 ×  𝑛, where 𝑛 is the number of input parameters considered, and it 

must be symmetric and positive semidefinite i.e. ∑𝑖𝑗 = ∑𝑗𝑖 . 

In general, covariance functions are classified into two categories; i) stationary 

and ii) nonstationary. A stationary covariance function is one that only depends 
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on the relative position of its two inputs, and not on their absolute location in 

time. The stationary covariance function requires less parameter, in particular as 

the dimension grows and maintains its unlike nonstationary covariance function 

and therefore stationary covariance function is focused of this 

research.  Exponential class, Matern class and rational quadratic are examples of 

stationary covariance functions. If the covariance is believed not to depend on the 

distance between the points in the input space but on the values the inputs take, 

one can consider non-stationary covariance functions. Example such as dot 

product and polynomial are the example of non-stationary covariance function 

and briefly described in [95]. 

The widely used squared exponential covariance function will be used here as the 

benchmark against which to compare alternative functions in terms of the model 

smoothness and fitting accuracy. Stationary covariance functions are the focus of 

this chapter in which power curve (described in chapter 4) is used as a key 

indicator since these are appropriate to wind turbine condition monitoring based 

on GP models.  They are described as follows. 

3.5.1 Exponential class covariance functions   

Two types of covariance functions fall into the category of exponential class; i) 

the exponential covariance function (ECov) and ii) the squared exponential 

covariance function (SECov). 

 Exponential covariance function (ECov) 

The exponential covariance function (ECov) for any finite collection of inputs 

{𝑥1, 𝑥2, … . . , 𝑥𝑛}   is defined as, 

                                       𝑘𝐸 (𝑥, 𝑥′) =   𝜎𝑓exp (−
(𝑥−𝑥′)

𝑙
 )                           (3.10) 

Where, (𝑥 − 𝑥′) is the distance between 𝑥 and 𝑥′(assuming 𝑥 > 𝑥′), 𝜎𝑓 is the 

signal variance and 𝑙 is the characteristic length. In order to include the effect of 

measurement errors associated with the SCADA data, an additional 

noise variance 𝜎𝑛
2 is added to equation (3.10), which is then written as 
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                              𝑘𝐸 (𝑥, 𝑥′) =   𝜎𝑓exp (−
(𝑥−𝑥′)

𝑙
 )  + 𝜎𝑛

2𝛿(𝑥, 𝑥′)               (3.11)                     

Using equation 3.11, a GP model for a power curve is constructed using the GP 

theory described above, and shown in Figure 3.1 which indicates a clear case of 

overfitting and suggests that GP algorithm constructed using the exponential 

covariance function gives a fitting that tries to follow too much of the random 

variation in the data, and consequently is far from the desired smooth function 

that is expected for a wind turbine power curve. Note: the red line in the figure 

represents the confidence intervals, these are briefly discussed briefly in the 

upcoming section. 

 

Figure 3.1: Power curve fitting using exponential covariance function 

 Squared exponential covariance function (SECov) 

The squared exponential covariance function (SECov) is a modified form of 

exponential covariance function and a widely used default covariance function in 

GP and SVM (support vector machine) models, [95,103]. For any finite collection 

of inputs {𝑥1, 𝑥2, … . . , 𝑥𝑛} , it is defined as: 
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                                  𝑘𝑆𝐸 (𝑥, 𝑥′) =  𝜎𝑓
2𝑒𝑥𝑝 (−

(𝑥−𝑥′)2

2𝑙2
 )                                      (3.12) 

where 𝜎𝑓
2 , 𝜎𝑛

2 and 𝑙 are known as the hyper-parameters and suitable optimization 

of these parameters is the key to accurate GP model fitting. 

Characteristic length scale (𝒍) : Characteristic length scale (𝑙) describes how 

quickly the covariance decreases with the distance between points. For example, 

a small value of length scale allows a rapid change in function values while larger 

values of length scale indicate constrain the rate of change in function values. In 

addition to these, the characteristic length scale (𝑙) helps in determining how far 

we can reliably extrapolate from the training data. 

 

Figure 3.2: GP model with small length scale [103] 

 

Figure 3.3: GP model with large length scale [103] 
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Signal variance (𝝈𝒇
𝟐) : this is a scaling factor and signifies the extent of changes 

in functions values from their mean. For example, small values of  𝝈𝒇
𝟐 , 

characterize functions that remain close to their mean value while a large value 

of 𝝈𝒇
𝟐 allows more variation. If the signal variance is too large, then the modelled 

function will be free to encompass outliers, rather than highlight them as potential 

anomalies. 

 

Figure 3.4: GP model with small-signal variance [103] 

 

Figure 3.5: GP model with large signal variance [103] 

Noise variance (𝝈𝒏
𝟐) : Measurement data comes with noise. So in order to make 

GP model more accurate, noise variance added into the training data as mentioned 

above. The main function of noise variance is to specify how much noise is 

expected to be present in the data. 
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Figure 3.6: GP model with small noise variance [103] 

 

Figure 3.7: GP model with large noise variance [103] 

The ref. [103] beautifully analysed the impact of length scale, signal variance, 

noise variance on a GP model and Figures 3.2 to 3.7 show why it is important to 

select suitable values of these parameters for GP model accuracy. 

3.5.2 Matern class covariance functions 

The Matern class of covariance functions was discovered by the Swedish 

statistician Bertil Matérn and is widely used in spatial statistics, [104], machine 

learning, [95], geostatistical analysis, [105], and other applications involving 

multivariate statistical analysis on metric spaces. It is commonly used to define 

the statistical covariance between observations made at two points that are 𝑟 units 

distant from each other. The Matern function depends solely on 𝑟 and hence is 

stationary in nature. The distance used here is Euclidean distance, hence the 
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Matérn covariance function is also spatially isotropic. Mathematically it is 

defined as,  

             𝑘𝑣(𝑟) = 𝜎𝑓
2 21−𝑣

𝛤(𝑣)
(√2𝑣

𝑟

𝑙
)

𝑣
𝐶𝑣 (√2𝑣

𝑟

𝑙
)                                             (3.13)         

where  Γ  is the gamma function, 𝐶𝑣 is the modified Bessel function of the second 

kind, [106], and 𝑙 and 𝑣 are non-negative parameters. 

 If 𝑣 = 𝑙 +
1

2
  , then the Marten covariance can be expressed as a product of an 

exponential and a polynomial of order 𝑙 ,[107], as shown below, 

         𝑘
𝑙+

1

2

(𝑟) = 𝜎𝑓
2𝑒𝑥𝑝 (−

√2𝑣𝑟

𝑙
)

Γ(𝑙+1)

Γ(2𝑙+1)

21−𝑣

Γ(𝑣)
∑  

(𝑙+𝑖)!

𝑖!(𝑙−𝑖)!
(

√8𝑣𝑟

𝑙
)

𝑙−𝑖
𝑙
𝑖=0                (3.14) 

If 𝑣 =
3

2
 and 𝑙 = 1 then equation (3.14), after simplification reduces to 

                                          𝑘3/2(𝑟) = 𝜎𝑓
2 (1 +

√3𝑟

𝑙
) 𝑒𝑥𝑝 (

−√3𝑟

𝑙
)                   (3.15) 

And if 𝑣 =
5

2
 and 𝑙 = 2 then equation (3.14), after simplification reduces to 

                    𝑘5/2(𝑟) = 𝜎𝑓
2 (1 +

√5𝑟

𝑙
+

5𝑟2

3𝑙2 ) 𝑒𝑥𝑝 (
−√3𝑟

𝑙
)                                (3.16) 

  where 𝑟 = √(𝑥 − 𝑥′)𝑇(𝑥 − 𝑥′)  is the Euclidean distance between 𝑥 and 𝑥′. 

Equations (3.15) and (3.16) are the mathematical expressions for Matern 3/2 and 

Matern 5/2 covariance functions respectively. 

Particular case: when 𝑣 →  ∞, then the Matern function converges to the squared 

exponential covariance function, [107], as shown below. 

                                         lim
𝑣→∞

𝑘𝑣(𝑟) =  𝜎𝑓
2 𝑒𝑥𝑝 (−

𝑟2

2𝑙2)                                  (3.17) 

Hence, the Matern covariance function includes the squared exponential 

covariance function as a particular case. 
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3.5.3 Rational quadratic (RQ) covariance function 

The mathematical equation for rational quadratic covariance functions for points 

𝑥 and 𝑥′ is defined below, [108], 

                                      𝑘𝑅𝑄(𝑥, 𝑥′) =  𝜎𝑓
2 (1 +

(𝑥−𝑥′)2

2𝛼𝑙2 )
−𝛼

                          (3.18) 

Where 𝛼 is a positive-valued scale-mixture parameter and determines the relative 

weighting of large-scale and small-scale variations. If we compare the rational 

quadratic function with the squared exponential covariance function, it is found 

that rational quadratic is equivalent to the adding a series of squared exponential 

covariance function with different values of the length scale, 𝑙. Thus, 

theoretically, it is expected that a rational quadratic covariance function fits the 

data smoothly across different length scales.  

As already described in chapter 5, SCADA data comes with measurement errors 

so; it is desirable to add a noise term to the covariance function in order to 

improve the accuracy of the GP model. Hence equations (3.12), (3.15), (3.16) and 

(3.18) are modified to be: 

                   𝑘𝑆𝐸 (𝑥, 𝑥′) =   𝜎𝑓
2exp (−

(𝑥−𝑥′)2

2𝑙2
 ) +   𝜎𝑛

2𝛿(𝑥, 𝑥′)                            (3.19)      

                    𝑘3/2(𝑟) = 𝜎𝑓
2 (1 +

√3𝑟

𝑙
) 𝑒𝑥𝑝 (

−√3𝑟

𝑙
) +   𝜎𝑛

2𝛿(𝑥, 𝑥′)                        (3.20)         

           𝑘5/2(𝑟) = 𝜎𝑓
2 (1 +

√5𝑟

𝑙
+

5𝑟2

3𝑙2 ) 𝑒𝑥𝑝 (
−√3𝑟

𝑙
) +   𝜎𝑛

2𝛿(𝑥, 𝑥′)                 (3.21)              

                        𝑘𝑅𝑄(𝑥, 𝑥′) =  𝜎𝑓
2 (1 +

(𝑥−𝑥′)2

2𝛼𝑙2 )
−𝛼

+   𝜎𝑛
2𝛿(𝑥, 𝑥′)                 (3.22) 

Here, 𝜎𝑓
2 signifies the signal variance and 𝑙 is the characteristic length scale. σ𝑛 

is the standard deviation of the noise term and impacts on model uncertainty, 𝛿 is 

the Kronecker delta, [95], and optimization of these hyper parameters was 

outlined in section 3.3. 
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3.6 GP power curve model based on covariance functions  

Wind turbine SCADA datasets need to be filtered and air density corrected as per 

methodologies described in 2.5 and 5.4 to obtain accurate analysis. The SCADA 

data obtained after that are used to construct GP power curve based on different 

stationary covariance function described in section 3.3 together with the 

optimised parameters using MATLAB. The results are shown in Figure 3.8 

together with an estimated 95% CIs and estimated power curve based different 

stationary covariance functions follow expected variance. This is further 

confirmed by plotting estimate power values against time series as shown in 

Figure 3.9. However, the real difference can be found in GP estimated uncertainty 

values which can be calculated and analyse by using CIs for individual GP power 

curve model. Finding a covariance function that reduces the uncertainty and 

increases early fault detection capabilities is the main objective and therefore 

significant comparative studies is being carried out in upcoming sections. 

 

Figure 3.8: Modelled power curves with CIs for different covariance functions 
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Figure 3.9: Estimated & measured power values 

GP models uncertainty analysis using confidence intervals 

In order to assess GP power curve accuracy, confidence intervals (CIs) can be 

used. CIs are a useful measure of uncertainty and the precision of model estimates 

and provide essential information about the uncertainty surrounding model 

estimates. For example, in chapter 5, a comparative analysis of uncertainty in IEC 

binned and GP fitted power curves using error bars and CIs respectively being 

carried out and found that uncertainty analysis of a power curve using CIs is 

relatively easy and straightforward as compared to binned error bars. 

An accurate assessment of a GP power curve can be done using confidence 

intervals. These GP CIs provide information on the uncertainty surrounding an 

estimation but are itself a model-based estimate. Data points that lie outside of 

chosen confidence intervals can be considered anomalous, signifying a potential 

malfunction of the wind turbine. Also, uncertainty signifies the ‘goodness’ of the 

estimated fit. The CIs are a useful measure of uncertainty and thus the precision 

of model estimates. The standard deviation is the square root of the variance of 
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the predicted function (𝑉𝑎𝑟[𝑓 ∗]) (of equation 3.8) and used to estimate the CIs 

of the GP power curve model using equation (3.23), 

                                 𝐶𝐼𝑠 = 𝑓 ∗̅̅ ̅̅ ± 2√𝑉𝑎𝑟[𝑓 ∗]                                              (3.23) 

Equation (3.23) suggest that CIs represent the pointwise mean plus and minus 

two times the standard deviation for given input value (corresponding to the 95% 

confidence region which represents the significance level of 0.05), for the prior 

and posterior respectively. CIs have been calculated using equation (3.23) and 

plotted as a function of the wind speed for covariance functions performance 

comparisons as described as follows. 

As already mentioned, the GP model based on a squared exponential covariance 

function will be used as a benchmark in order to assess other GP models accuracy. 

Figures 3.10, 3.12 and 3.14 show the comparisons of fitted GP models based on 

different covariance functions for measured power curve data, while Figures 

3.11,3.13 and 3.15 compare model uncertainty as a function of the wind speed 

quantified in terms of confidence intervals against the benchmark. 

For the Matern 3/2 based GP model, the uncertainty is high, while with the Matern 

5/2 based GP model it is small, but model fitting accuracy is less as compared to 

the benchmark GP model.  The power curve fitting and uncertainty performance 

is almost the same for the benchmark model and GP model based on a rational 

quadratic covariance function, as shown in Figure 3.15. 



 
83 | P a g e  

 

 

Figure 3.10: Estimated & measured power curve for SECov and Matern 3/2 

 

Figure 3.11: Uncertainty analysis using CI for SECov and Matern 3/2 
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Figure 3.12: Estimated & measured power curve for SECov and Matern 5/2 

 

                        Figure 3.13: Uncertainty analysis using CI for SECov and Matern 5/2      
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Figure 3.14: Estimated & measured power curve for SECov and rational quadratic      

 

Figure 3.15: Uncertainty analysis using CI for SECov and rational quadratic      

3.7 Performance comparisons  

In this section, a comparative study of the different stationary covariance 

functions and their influence on GP power curve fitting is presented. Figure 3.16 

shows the power curve of the different GP models with respect to the measured 

power curve and no significant differences between the individual GP models can 

be observed. Model uncertainty is compared through CIs, as shown in Figure 
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3.17. This suggests that the Matern 3/2 based GP model has relatively worst 

performance while both SECov and rational quadratic based GP models give the 

most accurate results. The GP based on Matern 5/2 performed better than Matern 

3/2, but more impoverished than the SECov and rational quadratic GP models, 

especially in the region nearer to the rated wind speed range. Well above rated 

wind speed very little difference can be discerned between the models, as shown 

in Figure 3.17.  

  

Figure 3.16: Comparative analysis of power curve fitting GP models 

 

Figure 3.17: Stationary covariance function impact on GP model uncertainty via CIs 
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3.7.1 Using Residuals Analysis 

Due to the nonlinear behaviour of a GP model, the residual which indicates the 

difference between measured and predicted values should also be investigated. 

Theoretically, residuals of a GP model should be Gaussian distributed, and this 

can be used to assess different stationary covariance function based GP power 

curve models for fitting accuracy and the nature of their distribution functions. 

The residual plots (Figure 3.18) indicates estimated GP values close to measured 

values and hence small model errors for all the GP models investigated. The 

frequency distribution of the residuals is shown in Figure 3.19 together with a 

fitted Gaussian distribution, and from that, it has been found that the rational 

quadratic and squared exponential covariance function based GP models have 

very similar distributions of residuals. Therefore, rational quadratic and SECov 

based GP gives similar histogram fitting and both are close to Gaussian (normal) 

distributions.  

 

Figure 3.18: Residual plot for different GP model in time series 
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Figure 3.19: Histogram distribution fits for the different GP models 

3.7.2 Using Performance Error Metrics 

There are several statistical performance metrics that can be used to assess the 

performance of the estimated power curves such as the root-mean-squared error 

(RMSE), normalized mean absolute percentage error (NMAPE), symmetric mean 

absolute percentage error (sMAPE), the mean absolute error (MAE), and the 

coefficient of determination (R2), [109]. In this chapter, we use three goodness-

of-fit indicators, namely the mean absolute error (MAE), the root mean squared 

error (RMSE), and the coefficient of determination (𝑅2) to evaluate the 

goodness-of-fit statistics of the GP power curve models.  These are defined as 

follows. The difference between the measured and estimated values can be 

expressed by mean absolute error (MAE): 

                                         MAE =  
∑ 𝑎𝑏𝑠(yi

′−yi)n
i=1

n
                                            (3.24) 

, or in terms of residuals, MAE =  
∑ (𝑒)n

i=1

n
                                                      (3.25) 
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To quantify the magnitude of the residuals (i.e., the difference between observed 

and modelled values, root mean square error (RMSE) is commonly used; defined 

as,                                         RMSE =  √∑ (yi
′ − yi)

2n
i=1

n
                                                (3.26)                               

where 𝑦′ are the GP predicted values for 𝑛 different predictions, and 𝑦 are the 

measured values. In terms of residuals this is:  

                                    RMSE =  √
∑ (e)2n

i=1

n
                                                             (3.27) 

Another statistical measure, the coefficient of determination (𝑅2), [109], 

quantifies how close the data are to the fitted regression, and calculated as the 

square of the correlation between predicted output and measured values (hence 

always in the range from 0 to 1 with values closer to 1 indicates better fitting of 

the model to the data).  It is defined as  𝑅2 = 1 − 
𝑆𝑆𝐸

𝑇𝑆𝑆
 ; where SSE is the sum of 

squared errors and TSS is the total sum of squares.  Table 3.2 listed the computed 

figures of merit for the different covariance functions based GP power curve, and 

confirm that the performance of SECov and Rational quadratic is almost similar. 

However, prediction time and time to train the GP model is longer in case of 

rational quadratic covariance function as shown in Table 3.2.  

MODELS RMSE 𝑹𝟐 MAE PREDICTIO

N SPEED 

TRAINING 

TIME 

REMARKS 

GP SECov 55.01 0.98 39.77 ~26000 

obs/sec 

45.50 sec Strong 

smoothness, faster 

GP Matern 

3/2 

54.83 0.99 40.46 ~16000 

obs/sec 

59.33 sec Poor smoothness 

GP Matern 

5/2 

54.95 0.99 39.68 ~17000 

obs/sec 

56.33 sec Less smooth 

compared to SECov 

GP Rational 

quadratic 

55.01 0.98 39.77 ~20000 

obs/sec 

143.57 sec Strong 

smoothness, 

slower 

       Table 3.2: Figures of merit and computational time for the different covariance functions 
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3.8 Chapter conclusions 

Gaussian Processes are a flexible class of models for which any finite-

dimensional marginal distribution is Gaussian, and which can be viewed as a 

potentially infinite-dimensional generalisation of the Gaussian distribution. In 

this chapter, an in-depth analysis of stationary covariance functions has been 

undertaken. The power curve of a wind turbine is traditionally used as a critical 

indicator to assess the power performance of wind turbines, and hence 

comparative analysis of different covariance functions has been carried out are 

based on the power curve. The comparative analysis gives an idea which 

covariance function is suitable for GP fault detection algorithm and thus being 

discussed in this chapter. The results show that rational quadratic covariance 

functions based fitted power curve GP models perform almost same as the 

commonly used SECov functions although prediction speed and time is taken by 

model to train the model is slower, whereas GP model based on SECov 

performance is superior as shown in table 3.2.  In short, both covariance functions 

work well in identifying a well fitted smooth function. The rational quadratic 

covariance function can be used instead of SECov for GP modelling if the data 

sets are small and there is no limitation on training time and prediction speed. 

While Matern 5/2 covariance can be used with caution, GP models based on 

Matern 3/2 perform poorly and are not recommended for wind turbine power 

curve modelling. 

This chapter suggests that squared exponential covariance function is appropriate 

for wind turbine condition monitoring based on GP models and therefore in 

upcoming chapters squared exponential covariance function would be used for 

constructing robust GP models for wind turbine condition monitoring. 
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Chapter 4 
 

 

 

Advanced nonparametric models performance comparison 

 
 

The different types of  statistical and nonparametric methods have been used to 

calculate the accurate power curves for wind turbine continuous performance 

assessment, forecasting and energy estimation; these are broadly classified into 

parametric and nonparametric methods in this chapter, three advanced 

nonparametric approaches, namely, Gaussian Process, Random Forest, and 

Support vector machine performance compared. The Gaussian Process, Support 

Vector Machine (SVM) and Random Forest (RF) are the advanced nonparametric 

methods that are used to modelled the wind turbine power curve using historical 

wind turbine SCADA data obtained from operational three bladed pitch regulated 

wind turbines.  

The widely used statistical performance error metrics, uncertainty analysis, and 

residual analysis are taken into account to identify the most accurate power curve 

modelling approach. This chapter would highlight the strengths and weaknesses 

of the proposed advanced nonparametric techniques to construct a robust fault 

detection algorithm for wind turbines based on power curves. 
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4.1 Background and Motivation 

Power production is the key consideration when assessing a potential site for 

wind farm development. The power output of a wind turbine is estimated from 

the power curve and wind speed profile for the site in question, and also from the 

site air density as this affects the wind power generation. The predicted long-term 

gross annual mean power output at a target site is calculated with the help of a 

Wind Turbine (WT) power curve. Moreover, power curve models can be useful 

in forecasting and capacity factor estimation purposes. 

Numerous techniques have been introduced in the past to model WT power 

curves and these techniques generally divided into parametric and nonparametric. 

Parametric models are generally based on mathematical models that are often 

constructed from a family of functions with a number of variables that are fitted 

to correspond to the particular wind turbine. Widely used parametric approaches 

are segmented linear models [110], polynomial regression [111], and models 

based on probabilistic distributions such as four- or five parameter logistic 

distributions [112]. In contrast to the parametric approach, nonparametric 

approaches do not enforce any pre-specified condition, and thus, the estimated 

power curve is as close as possible to the measured data subject to the smoothness 

of the fit. Because of this, nonparametric models are able to model the power 

curve accurately over a wide range. Several studies have been conducted to 

develop an accurate power curve based on nonparametric techniques for 

performance evaluation, and these include a  nonlinear regression model [113], 

cubic spline interpolation [114], neural networks [115,116], and data-driven 

methods (e.g., k-nearest neighbour clustering [117]). A comprehensive review of 

the existing WT power curve monitoring techniques can be found in [114]. 
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GP models are used extensively in the literature [118,119] for a wide range of 

modelling applications; however, GP model applications are mostly for 

forecasting and prediction; in condition/performance monitoring, their 

application has to date been limited. SVM is another nonparametric method that 

has been introduced for wind turbine power curve modelling [120,121]. However, 

both methods suffer from a number of practical issues such as the cubic inversion 

issue associated with massive datasets (see chapter 3). Finally, the RF model is 

another nonparametric approach used to construct power curves. Unlike most of 

the nonparametric approaches, the RF does not need to be tuned or optimised, 

and it incorporates the prediction of several weak predictors [122]. As the name 

suggests, it is used to create a forest in some way and make it random while 

maintaining the direct relationship among the number of trees in the forest. 

Usually, a large number of trees indicates a more accurate result. It is worth noting 

that RF and decision tree techniques are not the same because with the RF random 

samples are used to obtain the root node and splitting the feature nodes, in contrast 

to decision trees [123]. These advanced nonparametric models are flexible and 

easy to implement, and computationally straightforward to implement; thus 

comparative studies of GP, SVM and RF needed to find the best approach among 

them for wind turbine condition monitoring. 

4.2 Chapter novel contributions 

As has already been mentioned, power curve model accuracy varies with the 

techniques and the particular data set used, and hence no single technique 

performs best in all cases of observations obtained from different WTs. It is 

therefore essential to investigate the performance of different nonparametric 

techniques for power curve modelling to evaluate which technique is more 

accurate for a given dataset. Advanced nonparametric models such as the GP, 

SVM, and RF are gaining popularity because of their low computational cost and 

high accuracy. The direct comparison between these models can be useful in 



 
96 | P a g e  

 

identifying the method that is more robust and computationally feasible. This 

chapter aims to fill this gap.  

The chapter presents the implementation of three advanced nonparametric 

algorithms (GP, SVM, and RF) for modelling of wind turbine power curves, and 

their accuracy has been compared using error performance metrics. Performance 

comparison of these methods is made to identify the best approach taking into 

account the computational cost and required processing power. The SCADA 

dataset obtained from modern pitch regulated wind turbines is used to train and 

validate the performance of the proposed nonparametric models. The outcomes 

should be useful in constructing power curve based fault detection algorithms, 

where accuracy and uncertainty are paramount, for wind turbine condition 

monitoring. A framework for modelling wind turbine power curves and its 

performance comparisons is presented in Figure 4.1 and described as follows. 

The SCADA data obtained from operational wind turbines are collected which is 

then filtered and air density corrected (described in chapter 5). After this, datasets 

divided into training and validation; training data points are used to train the 

models, and validation data points are used to validate the performance of models. 

Performance Error metrics, residuals analysis, and uncertainty analysis are used 

to compare the performance of the models and based on this comparison, the best 

approach for wind turbine power curve modelling is being suggested. 
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Figure 4.1: A framework of the advanced nonparametric Wind Turbine Power Curve models 

for performance comparison 

4.3 Why wind turbine power curve? 

The wind turbine power curve described the nonlinear relationship between the 

power output and hub height wind speed, see Figure 4.2. The electrical power 

output of the turbine is not only dependent on wind speed but also affected by 

turbulence intensity, wind direction, vertical and horizontal shear, drive train 

temperature, yaw error and so on [124].  
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Figure 4.2: Measured power curve of an industrial wind turbine 

An accurate power curve is not only used to improve performance assessments 

but can play a significant role in identifying different wind turbine fault types 

[74]. Usually, an individual WT has unique power curve depending to the 

operating conditions for which it has been designed (e.g., wind speed range) and 

actively used for continuous monitoring the performance by differentiating 

between a normal and an abnormal state [124]. The WT power curve follows the 

sigmoid shape and any changes in its characteristic shape likely to indicate 

abnormal operation due to a fault. The wind speed between the cut-in and the cut-

out speed ranges are considered significant because this operational region 

presents a significant opportunity to optimise the power generation process, 

described briefly further in upcoming chapter 5. 

The SCADA datasets of turbine rated at 2.3 MW of wind farm located in 

Scotland, UK has been used in this research to evaluate the performance of 

advanced nonparametric models. The total data points of 13,250 that begin with 

time stamp ‘‘1/10/2012 00:00 AM’’ and ending at time stamp ‘‘31/12/2012 23:50 

PM’’ are sampled at 10-minute average and are used for models training and 

validations. These measured data points became 3960 data points after pre-

processing (Table 4.1) as per the methodology described in section 2.5. In 
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addition to that, IEC Standard air density approach outlined in 5.4 are used to 

make power curve air density corrected. Figure 4.3 signifies the air density 

corrected and pre-proceed measured power curve.  The whole SCADA data are 

divided into two parts; training data (70% of all of the data) and validation data 

(30% of all of the data). Training SCADA data used to train the model while 

validation SCADA data are used to validate the models' accuracy.   

 

Figure 4.3: pre-processed and air density corrected power curve 

Start timestamp End timestamp Measured 

data 

Filtered 

data 

Training 

data 

Validation 

data 

1/10/2012 00:00 AM 31/12/2012 23:50 PM 13250 3960 2500 1460 

                                   Table 4.1: SCADA data description 
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4.4 Power curve modelling using advanced nonparametric models 

In this section, the algorithmic procedures of the proposed advanced 

nonparametric power curve modelling approaches are explained in detail. The 

three advanced nonparametric models, namely; GP, SVM, and RF were used to 

construct the power curve of a WT. Out of these three approaches, GP and SVM 

are kernel based methods while RF technique is based on a regression tree. 

   4.4.1 Power curve model based on Gaussian Process 

GP models theoretical description to estimate the values are well described in 

chapter 3 and are used to power curve. The training SCADA data of Table 4.1 is 

used to train the GP model while validation SCADA datasets are used to test the 

accuracy of the GP model (in MATLAB) and result shown in Figure 4.4. Figure 

4.4 suggests that GP power curve is smooth and continuous and, able to fit the 

measured power curve accurately.  

 

Figure 4.4: Gaussian Process based power curve 
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 4.4.2 Power curve model based on Support Vector Machine 

The SVM is a nonparametric, machine learning technique, which follows the 

principle of structural risk minimisation. SVM mostly used in solving a problem 

related to classification (called support vector classification) and regression 

(called support vector regression). SVM based on statistical learning theory and 

Ref. [125,126] provide a detailed explanation of it.   

In this study, epsilon-insensitive SVM (ε-SVM) regression used (i.e., L1 loss) 

where the dataset includes predictor variables and observed response values. In 

ε-SVM regression, the primary objective is to find a function 𝑓(𝑥) that differs 

from 𝑦𝑛 to an extent not greater than ε for each training point 𝑥 and be flat at the 

same time as much as possible. To model power curve, the dual formula for 

nonlinear SVR used since dual formulation lends itself easily to classify data 

which is not linearly separable in the original feature due to the ‘Kernel Trick’ 

which makes computations implicitly in high dimensional space. In ‘Kernel trick’ 

the inner product in the input space is replaced by kernel function and this 

approach is particularly valuable in a condition where it is more convenient to 

compute the kernel than the feature vector themselves.  

The dot product 𝑥1∙
′ 𝑥2 (of linear SVR: dual Formula) replaced by a nonlinear 

kernel function,  𝐺(𝑥1, 𝑥2) =< 𝜑(𝑥1), 𝜑(𝑥2) >  where 𝜑(𝑥) is a transformation 

that maps 𝑥 to a high- dimensional space and is called dual formula and being 

used in this research. The Gram matrix is an n-by-n matrix which contains 

elements; 𝑔𝑖𝑗 = 𝐺(𝑥𝑖 , 𝑥𝑗), where each element 𝑔𝑖,𝑗 is equal to the inner product 

of the predictors as transformed by 𝜑. It should be noted that using kernel 

function, Gram matrix can be calculated directly hence don’t need to know the 𝜑 

value. Using this technique, nonlinear SVM calculates the optimal function f(x) in 

the transformed predictor space. Using nonnegative multipliers (𝛼𝑛 and 𝛼𝑛
∗  ), the 

Lagrangian function of the primal function constructed for each observation 𝑥𝑛 
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which leads to dual formula, where a nonlinear regression finds the coefficients 

that minimise, 

L(α) = 0.5 ∑ ∑ (αi − αi
∗)(αj − αj

∗)N
j=1

N
i=1 G(xi, xj) +  ε ∑ (αi + αi

∗)N
i=1 −

                  ∑ yi(αi − αi
∗)N

i=1                                                                                                       (4.1) 

Under the following constraints: 

                                                    ∑ (𝛼𝑛 − 𝛼𝑛
∗ )𝑁

𝑛=1 = 0 ;                  

∀𝑛 ∶ 0 ≤ 𝛼𝑛 ≤ 𝐶 ; 

∀𝑛 ∶ 0 ≤ 𝛼𝑛
∗ ≤ 𝐶. 

In SVM regression, the input (𝑥𝑛, 𝑥) first mapped onto a 𝑚 – dimensional feature 

using fixed nonlinear mapping, and then a linear model is constructed in this 

feature space using a following mathematical equation, 

                     𝑓(𝑥) = ∑ (𝛼𝑛 − 𝛼𝑛
∗ )𝑁

𝑛=1 𝐺(𝑥𝑛, 𝑥) + 𝑏                                        (4.2) 

where 𝑓(𝑥) is the linear model (in the feature space) and this particular technique 

called 휀-SVR regression [127]. The ε -insensitive loss function is used to build 

the objective function of the 휀- SVR.  

The Karush-Kuhn-Tucker (KKT) complementarity conditions are optimisation 

constraints required to obtain optimal solutions. For nonlinear SVM regression,  

∀𝑛 ∶  𝛼𝑛(휀 + 𝜉𝑛 − 𝑦𝑛 + 𝑓(𝑥𝑛)) = 0  ; 

∀𝑛 ∶  𝛼𝑛(휀 + 𝜉𝑛
∗ + 𝑦𝑛 − 𝑓(𝑥𝑛)) = 0 ; 

∀𝑛 ∶  𝜉𝑛(𝐶 − 𝛼𝑛) = 0 ; 

∀𝑛 ∶  𝜉𝑛
∗(𝐶 − 𝛼𝑛

∗ ) = 0 ; 

These conditions indicate that all observations strictly inside the epsilon tube have 

Lagrange multipliers αn = 0 and αn
* = 0. If either αn or αn

* is nonzero value zero, 

then the corresponding observation referred to as support vectors. 
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The 𝐶 is the box constraint which control the penality imposed on the observation 

that lie outside epsilon margin (𝜖) and help to prevent model overfitting. This 

value determines the trade-off between the flatness of function 𝑓(𝑥) and the 

degree to which larger deviations (larger than 휀) are tolerated. In 

short, both C and  휀 values affect SVR accuracy, and therefore it is necessary to 

find optimal values for these parameters by using appropriate optimization 

techniques. The optimization of SVM regression based on Sequential minimal 

optimization (SMO) algorithm and Cross validation is being carried out to 

calculate the best possible value for box constraint and epsilon based on the work 

of [126,128]. 

The calculation of 휀 and 𝐶 are based on the nature of input datasets and the choice 

of kernel. In this study, a Gaussian kernel was used and C values is calculated as 

iqr(Y)/13.49 where iqr(Y) is the interquartile range of the response variable Y, 

[129]. The 13.349 is a rescaling factor (that quantifies the statistical dispersion in 

a set of numerical data) that reflects the change from interquartile range to 

standard deviation. The bias ∈  is a part of the original primal formula (equation 

4.1) of the SVR and is calculated from the following equation, [126,128], 

                                       ∈ = ∑ (𝛼𝑛 − 𝛼𝑛
∗ )𝑁

𝑛=1                                                              (4.3) 

Where 𝛼𝑛 and 𝛼𝑛
∗  are the nonnegative multipliers for each observation 𝑥𝑛. The 

obtained biased value added into the model to predict the power curve of wind 

turbine accurately.  

The Gaussian kernel is also popularly known by radial basis function (RBF) 

kernel because it makes computation faster and involves computations in higher 

dimensional space. In this chapter, the Gaussian kernel is used model SVR based 

power curve and mathematically expressed as, 

                                  𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝(−𝛾‖𝑥 − 𝑥′‖2)                                               (4.4) 

Where 𝛾 is the kernel scale for given points 𝑥 and 𝑥′.   
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To select the best kernel scale parameter, cross-validated ‘grid-search’ cross-

validation carried out for RBF kernel of the SVM regression for power curve 

modelling in which 10-fold used.  

The SCADA dataset of Table 4.1 was used to estimated the power curve and 

result is shown in Figure 4.5. The SVR based power curve is continuous and 

accurately predicts the measured power curve. However, at above-rated wind 

speed, the SVR power curve accuracy deteriorates because of lack of a sufficient 

number of data points in that wind speed region. Furthermore, it suffers from the 

cubic inversion issue like GP models (described in chapter 3) which affect the 

model accuracy and caused heavy computational load while dealing with large 

datasets.  

 

Figure 4.5: Support Vector Regression based power curve 

4.4.3 Power curve model based on Random Forest 

Random Forest (RF) is a nonparametric, supervised learning approach that 

combines the prediction of several decision trees to get a more accurate and stable 

estimation. The RF creates a forest which is an ensemble of decision trees (hence 

RF called Ensemble learning technique) and makes it somehow random [123] 

and these trees are mostly trained with the ‘bagging’ method. The systematic and 



 
105 | P a g e  

 

detailed explanation of RF can be found in [129]. Here, a brief description of RF 

would be provided. The RF is a collection of Classification and Regression Trees 

(CARTs) in which CART splits the input space recursively, according to a 

predefined split criterion, to small rectangular regions and then fits a simple 

model, commonly a constant value, in each one of them, and this can be 

demonstrated by the tree diagram, see Figure 4.6. 

The fundamental principle is called bagging (bootstrap aggregation); where a 

sample of size 𝑛 taken from the training set 𝑆𝑛 is selected randomly and fitted to 

a regression tree and grow the tree using CART approach to maximum size and 

do not prune. 

 

Figure 4.6: Example of tree diagram from classification and regression tree (CART) analysis, 

[130] 

In RF ensemble learning approach, a group of ‘weak learners’ used together to 

form a ‘strong learner’ to improve the performance. RF uses decision tree in 

which each tree is constructed from a bootstrap sample from the original dataset 

with an objective to increase diversity between members of the ensemble by 

restricting classifiers to work on different random subsets of the full feature space 

[131]. In the RF approach, 𝑘 bootstrap sampled randomly and then a regression 
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tree fit on each sample. After that, the average values of 𝑘 regression tree are 

taken in order to make an estimation. 

In this section, RF algorithm as per [132], used to estimate the power curve of a 

WT where bootstrap samples are generated similar to bagging algorithm. The 

bootstrap aggregation produces non-correlated trees through different training 

samples which give immunity to noise. However, instead of using all training 

data to fit the tree, only random predictor variables are used at each split. Splitting 

the decision improve the RF accuracy such that the reduction in the residual sum 

of squares is maximised [132]. Here, SCADA datasets (of Table 4.1) divided at 

the first node where all variables (wind speed and power output) values are 

considered, and after the split, further variable and splitting condition is selected 

and this repeated again. While doing this, the same variable can be selected 

consecutively and hence this splitting technique called recursive binary splitting. 

To find the optimal values, randomly selected predictor (𝑘𝑡𝑟) can vary. 

It should be noted that RF tried to search for the best split among the 𝑘𝑡𝑟 selected 

features and this selection is uniform. The randomly selected predictor (𝑘𝑡𝑟) is 

same for all prediction trees and it is recommended to be the square root or one 

third of the features number 𝑘 as:  𝑘𝑡𝑟 = √𝑘  or,  𝑘𝑡𝑟 =
𝑘

3
. After that, the RF 

algorithm is similar to the CART where by minimizing the cost function, best 

split is obtained and repeat the procedure until full development of all trees. RF 

models are very good at capturing the nonlinear relationship between features and 

the target and in minimizing the overfitting issue. The spatial 10-minute average 

training SCADA datasets (Table 4.1) are used to estimate the power curve based 

on RF and is shown in Figure 4.7. Figure 4.7 suggest that the RF based power 

curve is accurately following measured power curve variance but neither it is 

continuous or smooth. It is worth to note that, the RF power curve is a predictive 

model, not a descriptive model and hence it does not give a description of the 

relationship among the predictors. Moreover, confusing data makes RF 
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inaccurate and confusing, hence it is desirable to select appropriate and error free 

predictors that affect the target variables. 

 

Figure 4.7: Random Forest based power curve 

4.5 Performance comparisons of the modelled power curve 

The advanced nonparametric models discussed in Section 4.4 are used for 

comparative analysis in order to find out which of the proposed advanced 

nonparametric models is able to reflect the dynamic properties of power curves 

accurately and what are advantageous and disadvantageous of proposed advanced 

nonparametric models. To do this, residual analysis, performance error metrics 

are used for performance comparison. The advanced nonparametric models result 

presented in above are compared in Figure 4.8 together with the measured power 

curve and comparative analysis suggest that GP based power curve is relatively 

more accurate and has a continuous and smooth fitting which closely following 

the expected variance at all wind speed range while RF based power curve is 

neither continuous nor smooth because it is built on CART theory, but closely 

matching the measured power curve. The performance of the power curve based 

on SVM deteriorates after rated wind speed because of the unavailability of 

reasonable numbers of SCADA data points as shown in Figure 4.8.  
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Figure 4.8: Comparative analysis of nonparametric models 

 

     Figure 4.9: Comparative analysis of nonparametric models in terms of time series 

Figure 4.9 shows the estimated power values in the time series of proposed 

advanced nonparametric models and signifies that the GP model able to estimate 

power most accurately in the entire time series. 
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4.5.1 Using performance error metrics 

Several statistical performance metrics can be used to measure the performance 

of the estimated power curves such as the root-mean-squared error (RMSE), 

normalised mean absolute percentage error (NMAPE), symmetric mean absolute 

percentage error (sMAPE), the mean absolute error (MAE), and the coefficient 

of determination (𝑅2).  

In this study, three goodness-of-fit indicators, namely the mean absolute error 

(MAE), the root mean squared error (RMSE), and the coefficient of determination 

(𝑅2) are used to evaluate the goodness-of-fit statistics of the advanced 

nonparametric power curve models and these are briefly described in chapter 3. 

Table 4.2 summarizes the error metrics (RMSE, MAE and 𝑅2) for advanced 

nonparametric power curve models. The RMSE and MAE of the power 

prediction using the power curve derived from GP power data have lower values 

than SVM and RF, which concludes the GP model has a better estimation of 

power curve. While the higher value of 𝑅2 in GP power curve model indicates a 

better coincidence of observed and estimated results. Based on these three 

performance metrics, GP algorithm ranks 1 and gives the most accurate power 

curve while RF based power curve ranks 3 and relatively gives inaccurate power 

curve. 

MODEL RMSE 𝑹𝟐 MAE RANK 

SVM 65.086 0.989 46.226 2 

GP 62.690 0.990 39.806 1 

RF 65.444 0.989 42.568 3 

               Table 4.2: Evaluation of nonparametric models using performance metrics  
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4.5.2 Using models residuals analysis 

The GP, RF, and SVM models are data-driven, nonlinear techniques whose 

residual distribution needs to be analysed. Residuals are the difference between 

measured value and estimated values and can be useful in identifying the 

deviation between the data and the regression model, which widely used to 

measure the variability in the response variable. The frequency distribution of the 

calculated residuals of advanced nonparametric models is shown in Figure 4.10 

together with a fitted Gaussian distribution and found that distribution of GP 

residuals is close to Gaussian as compare to other nonparametric models. 

 

Figure 4.10: Estimated residuals of advanced nonparametric models  
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Figure 4.11: Comparative studies of histogram fitting of nonparametric models 

4.5.3 Using models uncertainty analysis 

Wind turbine power curve vastly used by wind industries to identify the failures 

that cause the turbine to underperform and do preventive maintenance in order to 

prevent downtime and catastrophic stage. The GP estimate Confidence Intervals 

(CIs) along with the mean function which makes uncertainty analysis is simple 

and straightforward. The detailed methodology to calculate the CIs of GP are 

described in chapter 3. The dataset of wind turbine asses in context to CIs and if 

data point lies outside the GP CIs, then that likely to suggest a possible wind 

turbine underperformance; this is discussed briefly in chapter 7. However, 

uncertainty analysis in RF and SVM models complex due to the extra 

mathematical computation associated with it. Some authors proposed techniques 

to calculate the confidence intervals for RF [133] and SVM [134] models but that 

requires high power processing, and computational cost and consequently makes 

the O&M cost higher. 
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4.6 Chapter conclusions 

Three advanced nonparametric models (GP, SVM, and RF) are proposed to 

assess their comparative performance in estimating power curve and find out of 

these which model gives most accurate power curve for performance/ condition 

monitoring purposes. The uncertainty analysis, performance error metric and 

residual evolution criterion were used for performance comparison of advanced 

nonparametric models.  

The computational results have demonstrated that the GP perform relatively 

better able to reflect the dynamic properties of a power curve whose distribution 

function is close to the Gaussian distribution. The calculated values of error 

metrics further suggest that GP model has the highest fitting accuracy which 

shows better coincidence of measured and estimated values, followed by the 

SVM model, see Table 4.2 and Figure 4.8. Both GP and SVM gives continuous 

and smooth power curves, but the RF based power curve is neither continuous 

nor smooth because its principle is inspired by CART and weak learners. 

The uncertainty analysis is significant in construction robust fault detection 

algorithms, and CIs comes with estimated values in GP and thus does not require 

extra mathematical computation which makes fault detection model construction 

relatively less computational. The uncertainty analysis in RF and SVM requires 

extra mathematical complexity that ultimately increases the computational cost, 

and therefore, these models are less attractive for wind turbine condition and 

performance monitoring activities from economic as well as technical point of 

view as compared to GP.  

In future chapters, how CIs can be useful for GP model uncertainty analysis and 

thus play a significant role in constructing robust GP fault detections algorithms 

will be described in detail. 
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Chapter 5 

 

Wind turbine operational curves using Gaussian Process 

models 

 

The power curve of a wind turbine is the function that characterises the overall 

performance of the machine and represents the nonlinear relationship between 

power output and wind speed. It plays an essential role in the prediction of the 

energy that can be captured at a site; to make comparisons among concurrent 

machines and to monitor the turbine efficiency over years of production. Many 

nonparametric models have been published; mostly applied to power curve based 

condition monitoring. However, turbine performance cannot be judged solely on 

power since various additional parameters also have significant influence. With 

the help of these additional variables, improved nonparametric models can be 

constructed which may be useful in identifying faults and thus improving wind 

turbine condition monitoring. 

In this chapter, two operational curves, namely, rotor speed curves and blade pitch 

angle curve along with power curve are constructed using GP approach for 

performance monitoring of a wind turbine. These developed GP operational 

curves can be useful for recognising faults that force the turbines to underperform 

and anticipating failures that will result in downtime. 

The constructed GP operational curves are compared with the conventional 

approach based on binned operational curves and model uncertainty is analysed 

in order to identify the most effective way to spot operational anomalies.  
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5.1 Background and Motivation 

Unscheduled maintenance resulting from unexpected failures causes downtime 

and associated loss of generation and potentially increased O&M costs. Several 

studies suggest that continuous monitoring of a wind turbine can be useful in 

improving the performance and minimising the O&M cost. The power curve 

mostly used by wind turbine operator to assess machine power performance, but 

it is not a perfect indicator because various failures and downtime events remain 

undetected by it. Therefore, it is desirable to explore other curves that are based 

on critical parameters that affect the operation and also sometimes the power 

production of a wind turbine. Wind turbine operation is affected by external 

factors such as wind turbulence, wind shear and icing, and internal factors such 

as oil temperature and lubrication. The events related to internal factors can be 

analysed and potentially controlled, while for external factors this is not possible 

since they cannot be controlled. Nevertheless, these internal factors are helpful in 

a performance evaluation of a wind turbine. The internal operation of the wind 

turbines that affect the power production depends on critical variables, in 

particular, the rotor speed and blade pitch angle. Therefore, continuous 

monitoring of these parameters improves the overall effectiveness of any model 

used to assess turbine performance [135]. The brief literature review of these 

critical variables and their importance in improving the performance of wind 

turbines is outlined below. 

The power coefficient is a function of the pitch angle, and thus the blade pitch 

angle affects the power production of the wind turbine. For example, [136], using 

Blade Element Momentum Theory (BEMT), studied the impact of critical 

parameters on wind turbine aerodynamic efficiency. Not surprisingly the study 

confirmed that the blade pitch angle has a direct impact on the power performance 

of a wind turbine. The nonlinear relationship between pitch angle and wind speed, 

called the blade pitch curve, is useful for wind turbine condition monitoring. For 
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example, Singh [137] considered underperformance due to the misaligned wind 

vane as a case study. A power curve and blade pitch angle curve were developed 

to detect the performance change due to the misaligned vane, and the result 

suggests that the blade pitch curve can detect the performance change while it is 

unidentified by the power curve. Thus, the use of pitch curve monitoring can be 

beneficial in identifying abnormal behaviour due to failures (e.g., pitch failures). 

In another example, the authors of [138] used five data-mining methods, namely, 

bagging, neural network, CART, kNN and genetic programming, to monitor the 

performance of blade pitch control. Comparative studies of these different models 

concluded that the genetic programming algorithm prediction accuracy was the 

best.  

Rotor speed in another critical variable that affects the performance of a wind 

turbine. The rotor curves are useful for identifying failures; there are two types. 

The rotor speed curve describes the nonlinear relationship between rotor speed 

and wind speed. A typical rotor curve is a monotonically increasing function 

of the wind speed and failures of turbines change its shape [139]. Alternatively, 

the rotor power curve signifies the nonlinear relationship between rotor speed 

and power output of a wind turbine and is useful in power performance 

assessment. It should be noted that there exists an optimal rotor speed for a 

given wind speed for which the power production of wind turbines is 

maximised. The authors of [140] constructed a reference rotor speed curve on 

which a multivariate outlier detection approach was applied using k-means 

clustering and the Mahalanobis distance. Using this curve, the 

underperformance of a wind turbine was identified using calculated kurtosis 

and skewness values.  

Singh [137] used a rotor curve to compare rotor torque to the produced power, 

and if there is a difference between theoretical and calculated values, this needs 

to be investigated. Finally, the authors of [140] studied lookup tables of power-
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speed curves used to achieve the maximum power point tracking (MPPT), 

though to do so requires significant memory space. 

5.2 Chapter novel contributions 

As already described above, many papers have used the wind turbine power 

curve to identify abnormal turbine states. However, many failures associated 

with underperformance and downtime remain undetected by power curve 

analysis, see for example [137]. Therefore, as substantiated above, there is a 

need to develop other reference curves based on key performance parameters 

of the wind turbine such as pitch angle and rotor speed. In this chapter, a 

SCADA based GP model based on these key variables is presented which can 

be useful in identifying abnormal operational states and associated anomalies 

efficiently. Using GP operational curves, a qualitative understanding of turbine 

health can be used to detect faults at an early stage. Furthermore, the operational 

curves can be used as performance indicators to measure the impact of internal 

factors. Moreover, GP operational curves can also be used as a reference model 

to identify significant wind turbine failures. The IEC 61400-12, [141], uses a 

data reduction approach, called ‘the method of bins’ or ‘binning’ to calculate 

the power curve of a wind turbine where ten-minute averaged SCADA data are 

grouped into wind speed intervals of 0.5 m/sec. The ‘method of bins’ technique 

is extended to calculate the operational curve and then compared with GP 

operational curves, and the strength and weakness of individual techniques are 

identified. 

5.3 Wind turbine operational curves 

The blade pitch angle, rotor speed, and rotor power were used to construct the 

GP reference models. The power curve is used alongside these two curves; 

together they are referred to as the operational curves and described as follows. 
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5.3.1 Power curves 

Wind farm operators widely use the power curve to assess the operation of 

their wind turbines. Accurate modelling of wind turbine power curve ensures 

precise performance monitoring and plays a significant role in forecasting 

wind power generation [135]. A power curve depicts the nonlinear relationship 

between power output and wind speed and every wind turbine has a 

characteristic power performance curve. Figure 5.1 is a measured power curve 

found by field measurements, where an anemometer is placed on a mast 

reasonably close to the wind turbine. The obtained information from 

anemometer stored in SCADA system and that information are used to plot the 

power curve. Figure 5.1 is obtained from monthly SCADA data and using this 

curve it is possible to predict the energy production of a wind turbine without 

considering the technical details of its various components. There is always 

uncertainty associated with a power curve and reducing this is the key for 

robust performance or condition monitoring of wind turbines. The available 

active power is a function of the total available power in the wind and depends 

on hub height wind speed and rated turbine efficiency. Mathematically it 

expressed as, [134], 

                                           𝑃 = 0.5 𝜌𝐴𝐶𝑝(λ, 𝛽 ) 𝑣3                                              (5.1)  

where ρ is air density (𝑘𝑔 𝑚3⁄ ), A is swept area (𝑚2) , 𝐶𝑝 is the power coefficient 

of the wind turbine and 𝑣 is the hub height wind speed (𝑚 𝑠𝑒𝑐⁄ ). The shape of 

power curve is governed by the cubic relation and the way power is regulated not 

to exceed rated power. Equation (5.1) describes idealized conditions: steady 

wind; spatially uniform flow undisturbed by any other turbine; no yaw error. 

Equation (5.1) is referred to as the ideal power curve where the power coefficient 

depends only on the tip speed ratio (λ) and pitch angle (β). In reality, the power 

performance of a wind turbine is highly influenced by other parameters associated 
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with site conditions, for example, wind direction, wind shear, turbulence and 

others [141]. 

 

Figure 5.1: Measured power curve. 

5.3.2 Blade pitch angle curve 

A blade pitch angle curve depicts the relationship between the turbine pitch 

angle and hub height wind speed, and an example is shown in Figure 5.2. The 

pitch angle for three bladed wind turbines is either the pitch of an individual 

blade or is calculated by averaging the angle of all three blades if available. 

The pitch angle is adjusted by the wind turbine controller to capture maximum 

power below rated power and to limit power during high winds.  

 

Figure 5.2: Measured pitch angle curve. 
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5.3.3 Rotor curves 

The rotor curves can be classified into two groups: rotor speed curve and rotor 

power curve. The relationship between rotor speed and wind speed is the rotor 

speed curve, and an example is shown in Figure 5.3.  It can be seen that above 

the cut in wind speed (4 m/s in this case) the rotor speed increases with wind 

speed. The rotor power curve that describes the relationship between rotor 

speed and power output of a wind turbine is illustrated in Figure 5.4. These 

curves are valuable in identifying faults by means of observing any difference 

from a reference faulted rotor curve. For example, ref. [137] outlines the 

importance of rotor power curve in his thesis where the power curve and rotor 

power curve developed to detect abnormal behaviour of turbines. The 

comparative studies found that the rotor power curve detected performance 

changes due to events that remained undetected by the corresponding power 

curve. 

.   

      Figure 5.3: Measured rotor speed curve      Figure 5.4: Measured rotor power curve 

5.4 Air density correction and SCADA data pre-processing  

Power generation from a wind turbine operating below rated power is in theory 

proportional to air density. Air density is not constant, and it changes with the 

weather, site altitude, and ambient temperature. Air density is straightforwardly 

calculated from the measurement of ambient air temperature and pressure. Air 
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density affects the wind power production, for example, the BARANI 

Company [142], concludes that weather influences air density significantly and 

air density can impact wind energy income generation by up to 10%. Air 

density also affects the accuracy of the power curve, and this is briefly 

described in chapter 6.  

IEC Standard (61400-12-1) suggest two methods for air density correction that 

can be applied to the power curve depending upon the power control system (i.e., 

pitch or stall regulated). SCADA datasets used in this thesis are from pitch-

regulated wind turbines (WTs) in which a corrected wind speed 𝑉𝐶  is calculated 

using equations (5.2) and (5.3) as shown below, 

                            ρ = 1.225 [
288.15

T
] [

B

1013.3
]                                               (5.2) 

     and,                VC =  VM [ 
ρ

1.225
 ]

1

3
                                                             (5.3) 

where, 𝑉𝐶  and 𝑉𝑀 are the corrected and measured wind speed in m/sec and the 

corrected air density is calculated by equation (5.2) where B is atmospheric 

pressure in mbar, and T the ambient temperature in Kelvin in which 10-minute 

average values obtained from SCADA data are used. The corrected wind speed 

(𝑉𝐶  ) from equation (5.3) is then used to calculate the power curve, normally 

calculated by binning.  

The SCADA data filtration criteria described in section 2.5 are used to remove 

misleading data and are shown in Figure 5.5 to 5.8. Despite these adopted 

methodologies, filtered SCADA data are not entirely free from error, but the 

impact of such errors has been minimized. 
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Figure 5.5: Filtered power curve 

 

Figure 5.6: Filtered blade pitch curve 

 

Figure 5.7: Filtered rotor speed curve 
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Figure 5.8: Filtered rotor power curve 

5.5 Gaussian Process-based wind turbine operational curves 

The GP theory described in chapter 3 is used here (realized in MATLAB) to 

estimate the operational curves of the wind turbine using the filtered, and air 

density corrected, SCADA datasets (of Figures 5.5 to 5.8), and results are 

shown in Figures 5.9 to 5.12, with the GP model closely following the 

expected variance. However, an excessive number of data points can make the 

GP model inaccurate due to its process involved in inverting a matrix of 

dimension equal to the number of data points. This asymptotic complexity is 

called cubic inversion 𝑶(𝑵)𝟑 where N is the number of data points. This was 

outlined in chapter 3. 
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Figure 5.9: GP power curve with CIs 

 

     Figure 5.10: GP blade pitch curve with CIs 

The black lines of Figure 5.9 to 5.12 show the confidence intervals (CIs) which 

play an essential role in identifying the unexpected data reflecting operational 

faults.  
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Figure 5.11: GP rotor speed curve with CIs 

 

Figure 5.12: GP rotor power curve with CIs 

It is worthwhile to note that in figure 5.12 that the CIs is large width from 12 

m/sec till 15 m/sec and in Figure 5.11, this is from 10 m/sec to 15 m/sec. While 

in Figure 5.9 and 5.10 the CIs are not large. While modelling GP operational 

curve, noise assumed to be constant through the range, plus due to the lack of 

sufficient number of data points, GP squared covariance function not able to 

build strong similarity characteristic which can be clearly seen in Figure 5.11 
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and 5.12 while 5.9 and 5.10 also been affected by this but its impact is relatively 

small. GP power curve with constant noise assumption works perfectly, and 

since this thesis solely focused on power curve, hence we continued to use this 

assumption. However, in dealing with other GP operation curve, it would be 

better to consider noise point by point basis instead of assuming constant noise 

across all range in order to get narrow CIs and reduce uncertainty.  

5.6 Comparative studies of Gaussian Process based wind turbine 

operational curves 

5.6.1 Using performance error metrics 

Deterministic and probabilistic error metrics (RMSE, MAE and 𝑅2) were used 

to evaluate the performance of GP operational curves. A brief description of the 

performance error metrics can be found in chapter 3. The calculated error metrics 

for the three GP operational curves are summarized in Table 5.1 and suggest that 

a GP accurately estimates the pattern of measured operational curves of a wind 

turbine. The RMSE and MAE calculated values suggest that among the 

operational curves, the GP blade pitch curve has a better prediction accuracy 

while 𝑅2 suggests that the GP power curve distribution function is relatively 

better than that of other operational curves. Figure 5.13 is the time series 

comparison of GP operational curves. 

GP Operational Curves RMSE 𝑹𝟐 MAE 

Power curve 38.0403 0.9942 28.9689 

Pitch curve 0.2283 0.9653 0.1076 

Rotor speed curve 0.2518 0.9773 0.1822 

Rotor power curve 69.0489 0.981 46.623 

Table 5.1: Statistical measures for GP operational curves models 
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Figure 5.13: Comparison of measured and estimated operational curves in time series 

5.6.2 Residual distribution analysis using QQ Plots 

The quantile-quantile or QQ plot is a simple graphical technique used to 

compare collections of data or theoretical distributions and is commonly used 

to identify the most appropriate distribution function. Identifying whether the 

distribution function is skewed or slightly tailed can be efficiently analysed 

with the help of a QQ plot. A theoretical QQ plot examines whether or not a 

sample 𝑆1,…..,𝑆𝑛 has come from a distribution with a given distribution 

function F(s) and is plotted against the expected value for the specified 

distribution using samples of datasets starting from small to large values, [143]. 

Compared to a histogram, the QQ plot is easy to interpolate. For example, Jean 

Gibbons [143], indicated that a QQ plot is easier to use than comparing 

histogram plots in order to judge skewness or more accurately assess whether 

the distribution tails are thicker or thinner than a normal distribution. Moreover, 

a QQ plot gives valuable information about graphical properties such as 

whether shape, location, size, and skewness are similar or different for two 

distributions and is thus used in this research. Histogram plots based on binning 
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method have disadvantages compared to QQ plots which is explained in [143] 

and summarized as follows:      

 The binning suppresses the nature and details of the error distribution 

which is often significant for condition monitoring purposes. For example, 

binning does not give an accurate view of what’s going on in the tails, and 

also often on in the central section. 

 In order to develop an effective binning algorithm, information about bin 

origin and bin width needs to know since this ultimately affects the 

appearance of the histogram. 

 Comparisons between two histograms are more problematic than that of 

judging the fit of a group of points to a straight line.  

 

Figure 5.14: QQ plot for GP power curve  

 

As described above, QQ plots that compare two samples of data can be seen as 

a non-parametric approach to compare their underlying distributions and are 

hence used here for GP operational curve distribution analysis. Theoretically, 

residuals of a GP model should be Gaussian, and the typical QQ plot would be 

a straight line with a unit gradient. It should be noted that QQ plot application 

is not only limited to Gaussian but can be applied to other distribution function 
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also. QQ plots are comparing the residual distribution with a Gaussian 

distribution for GP operational curves (see Figure 5.14 to 5.17). QQ plot plots 

each data point in ‘x’ using plus sign ('+') markers (blue line) and draws two 

reference lines that represent the theoretical distribution. A solid reference line 

(red) connects the first and third quartiles of the data, and a dashed reference 

line extends the solid line to the ends of the data. This plot produces an 

approximately straight line, suggesting that the estimated GP operational 

curves closely follow a normal (Gaussian) distribution. QQ plot analysis is 

useful for identifying essential parameters such as skewness, associated with 

GP operational curves. Thus, it is useful in wind turbine condition monitoring.  
 

 

 

Figure 5.15: QQ plot for GP blade pitch curve 

 

Figure 5.16: QQ plot for GP rotor speed curve 
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Figure 5.17: QQ plot for GP rotor power curve 

Sr.no GP Operational Curves RMSE 

 

MAE 

1 Power curve 2.22 1.42 

2 Blade pitch curve 0.02 0.005 

3 Rotor power curve 4.62 1.74 

4 Rotor speed curve 0.01 0.004 

Table 5.2:  Statistical error for different GP models from QQ plot. 

Statistical performance indicators (RMSE and MAE) calculated from the QQ 

plots, further validate this; see Table 5.2. The calculated values of RMSE and 

MAE suggest that GP-based rotor speed curve and blade pitch curve have a 

distribution function very close to the Gaussian distribution as compared to 

other GP operational curves. 

5.7 IEC Binning method 

The IEC 61400-12 [141] recommended data reduction technique called the 

‘method of bins’ or ‘binning’ is generally used to calculate the power curve of a 

wind turbine and its associated uncertainty. The IEC Standard uses mast or 

nacelle wind speed to calculate the power curve. In IEC binning, the average 

power output for each bin is obtained by grouping power measurements into wind 
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speed bins. The bin width kept at 0.5 m/sec wide wind speed interval. Using a 

large number of data points gives more certainty for the average values in the 

power curve using this approach.  In this section, the binning method has been 

applied to calculate operational curves of wind turbines using the following 

equations,      

                                          𝑉𝑖 =
1

 𝑁𝑖
∑ 𝑉𝑛,𝑖,𝑗

𝑁𝑖
𝑗=1                                                (5.4) 

                                       𝑉𝑟𝑖 =
1

 𝑁𝑖
∑ 𝑉𝑟𝑛,𝑖,𝑗

𝑁𝑖
𝑗=1                                                (5.5) 

                                         𝑃𝑖 =
1

 𝑁𝑖
∑ 𝑃𝑛,𝑖,𝑗

𝑁𝑖
𝑗=1                                                      (5.6) 

                                         𝐵𝑖 =
1

 𝑁𝑖
∑ 𝐵𝑛,𝑖,𝑗

𝑁𝑖
𝑗=1                                                (5.7) 

where, 

𝑉𝑖 =  normalised and averaged wind speed in bin 𝑖.  

𝑉𝑛,𝑖,𝑗 = normalized wind speed of data sets 𝑗 in bin 𝑖. 

𝑉𝑟𝑖 = normalised and averaged rotor speed in bin 𝑖; 

𝑉𝑟𝑛,𝑖,𝑗 = normalized rotor speed of data sets 𝑗 in bin 𝑖. 

𝑃𝑖 = normalized and averaged power in bin  ; 

𝑃𝑛,𝑖,𝑗 =  normalized power of data set 𝑗 in bin 𝑖. 

𝑁𝑖 = number of 10 min average data sets in bin 𝑖. 

𝐵𝑖 =  normalised and averaged pitch angle in bin 𝑖. 

𝐵𝑛,𝑖,𝑗 =  normalized pitch angle of data set 𝑗 in bin 𝑖. 

It should be noted that the wind speed is the most significant source of uncertainty 

and including more data points give more certainty to the average value in the 

pitch curve. Type B uncertainties would be challenging to treat in a consistent 

manner without greater knowledge of the instrumentation used. Therefore, in this 

chapter, we used the statistical spread evident in the binned data. 
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5.8 Comparative analysis of operational curves based on Gaussian 

Processes and Binning 

 Binned and Gaussian Process based Power Curve 

The IEC binned power curve is considered to be an accurate approach to power 

curve determination and uncertainty analysis and thus has been selected as the 

benchmark against which to assess GP models. The error bars are a graphical 

representation of the variability of wind data and the spread of data around the 

mean value. They are an effective tool to represent the error or uncertainty in the 

power curve of a wind turbine. Following the IEC Standard, the binned power 

curve is calculated as per binning methodology (described above) and is shown 

with error bars (95% confidence interval) in Figure 5.18.  It is found that the 

spread of data is high (due to high error bars values) between a cut in and rated 

wind speed, and small above rated, reflecting in the main the manner in which 

wind turbine power is controlled. 

 

Figure 5.18: Binned power curve with error bars. 

Conventional IEC Standard binned power curves described above are compared 

with a GP power curve shown in Figure 5.19. The GP power curve model closely 

follows the IEC based power curve. Above rated wind speed, there is fewer 
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SCADA data available, and as a result, the GP curve is less well determined with 

some mismatch with the binned power curve. This observation confirms that a 

GP model based on too little data can be inaccurate. On the other hand, a large 

dataset leads to high complexity, high processing costs and potentially inaccurate 

results due to the mathematical challenges posed by the 𝑶(𝑵)𝟑 issue. Hence an 

optimum size of the dataset is a necessary and prerequisite for accurate GP 

modelling.   

 

Figure 5.19: Binned and GP power curve comparison. 

The GP predicted power curve is compared with the IEC binned power curve 

(with 95% confidence interval of error bars) in terms of uncertainty in Figure 

5.20. The part of the power curve between a cut in and rated wind speeds, where 

maximum power tracking takes place, is the most critical for condition 

monitoring purposes. This is because small changes in turbine efficiency (perhaps 

due to blade damage or excessive drivetrain losses) can be readily detected, 

whereas, at above-rated wind speed where power is limited by the control system, 

this loss of efficiency will be masked by greater wind power input. The smaller 
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CIs for the GP model compared to the binned power curve between a cut in and 

rated wind speed indicate that GP model is more accurate for this critical range.  

Since a GP model is a form of interpolation, its uncertainty increases towards the 

two ends of the data set (i.e., low and high winds). This can be seen in Figure 

5.20 but is not of concern for condition monitoring applications for the reasons 

explained above. It is worth to note that, GP power curve assumed noise constant 

across wind speed in constructing GP power curve. In short, the CIs of the GP 

power curve, being smaller for the critical wind speed range, is better able to 

reject the unhealthy or faulty data than the binned power curve. For accurate and 

early anomaly detection, the smallest possible confidence intervals are required. 

The IEC binned power curve is relatively slow to respond while the GP model 

can be established from limited data with reasonable accuracy. In summary, for 

a binned power curve, the data variation is highest on the rising section of the 

power curve. By comparing a binned power curve with a GP power curve, it is 

found that the latter is more accurate over the rising section of the power curve.   

 

             Figure 5.20: Overview of GP power curve and binned power curve uncertainties. 
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 Binned and Gaussian Process based blade pitch angle curve 

It should be noted that wind speed is the most significant source of uncertainty 

and including more data points give more certainty to the average value in the 

pitch curve. The pitch curve is calculated together with error bars and shown in 

figure 5.21. It is worth noting that for this study the SCADA datasets used to 

come from a wind farm located in southern Europe and had an average monthly 

temperature of 29.779℃. The two standard deviations (i.e., 95% CIs) of 

measured pitch angle values are used to obtain the error bars which is used to 

measure the uncertainty associated with each bin of the pitch curve. However, the 

‘method of bins’ is not the most effective technique since its accuracy 

compromised by choosing bin width of 0.5 m/sec because within each bin the 

measured power or pitch will depend strongly and non-linearly on wind speed 

and a wide bin would result in systematic bias. Also, there is a need in practice to 

get sufficient data points in each bin to be of statistical significance. 

 

           Figure 5.21: Binned blade pitch curve with error bars 

Binned pitch curves described above are compared with a GP pitch curve in 

Figure 5.22; this shows that GP pitch curve model closely follows the binned 
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pitch curve. This observation confirms that a GP is competent in estimating the 

wind turbine pitch curve. However, the accuracy of a GP model depends upon 

the quantity and quality of the data, as well as the appropriate method used. A 

low number of pitch angle-wind speed pairs may not give a smooth pitch curve 

while a high number is also not desirable because of the mathematical challenge 

of calculating a GP for a large number of data points. 

A GP model comes with intrinsic CIs, and provide significant information on the 

uncertainty surrounding an estimation, but they are also model-based estimates, 

see 3.6.1. The GP estimated pitch curve compared with the binned pitch curve 

(with 95% CIs of error bars) in terms of uncertainty in Figure 5.23. This 

comparative analysis suggests that GP confidence intervals are smaller than those 

from the binned pitch curve in almost all cases. Due to this smaller confidence 

interval, the GP is better able to reject unhealthy or faulty data than the binned 

power curve, see Figure 5.23. 

 

Figure 5.22: Comparison between binned and GP based pitch curve 
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Figure 5.23: Comparative studies of pitch curve uncertainty based on binning and GP 

 Binned and Gaussian Process based rotor curves 

Wind turbine rotor curves constructed together with error bars and compared with 

measured rotor curves shown in Figure 5.24 and 5.25. The uncertainty of rotor 

curves based on binning assess via its error bars where two standard deviations 

(i.e., 95% CIs) of measured power values and measured rotor speed are used to 

calculate the error bars of the rotor power curve and rotor speed curve 

respectively. This obtained error bar used to measure the uncertainty associated 

with a bin of the respective rotor curves. But, the accuracy of ‘method of bins’ is 

weaken due to the selection of bin width of 0.5 m/sec because within each bin the 

output (power, rotor speed) will depend strongly and non-linearly on input (wind 

speed, rotor speed) and a wide bin would result in a systematic bias, and the need 

in practice to get sufficient data points in each bin to be of statistical significance. 

The binned rotor curves as expected following the measured rotor curves of a 

wind turbine. The uncertainty of binned rotor power curve is started increasing 

after 16 m/s rotor speed (Figure 5.24) while between cut in and rated wind speed 

range, the uncertainty of binned rotor speed curve is high, see Figure 5.25. 
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Figure 5.24: Binned rotor power curve 

The GP based rotor power curve is able to predict expected variance accurately; 

this is then compared with the binned rotor power curve and shown in Figure 

5.26. However, in this case, the GP model uncertainty as compared to binned 

approach is relatively high across the rotor speed region. 

 

Figure 5.25: Binned Rotor speed curve 

The noise in these curves treated constant across the speed range.  Although this 

does not have a significant impact on estimated values, it certainly increases the 
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GP model uncertainty as shown in Figure 5.26 and 5.27. Therefore, it is advisable 

to calculate noise value at each point instead of assuming constant across the 

range in order to get improved GP model uncertainty. Also, it should be noted 

that the accuracy of GP models depends upon the quantity and quality of the data, 

as well as the suitable method used.  

 

Figure 5.26: Comparative analysis of rotor power curve based on GP and binning 

The rotor speed curves based on GP and binning presented and their comparative 

analysis conclude that the GP model closely follows the binned and measured 

rotor power curve as shown in Figure 5.27. The uncertainty of the GP model is 

low between a cut in and rated wind speed range as compared to the binned 

approach. Above rated wind speed, there are fewer SCADA data available, and 

as a result, the GP curve less well determined with some mismatch with the 

binned rotor power curve. This observation concludes that a GP model based on 

too little data can leads to inaccurate results. On the other hand, a large dataset 

leads to high complexity, high processing costs and potentially inaccurate results 

due to the mathematical challenges posed by the 𝑶(𝑵)𝟑 an issue associated with 

cubic matrix inversion (briefly described in chapter 3). Hence an optimum size 

of the dataset is a necessary and prerequisite for accurate GP modeling.  
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Figure 5.27: Comparative analysis of rotor speed curve based on GP and binning 

5.9 Chapter conclusions 

The relationship between critical parameters, for example, power, wind speed, 

blade angle and rotor speed can be used in early detection of faults and failures 

in order to improve the power performance of wind turbines. GP models are a 

data-driven approach which is capable of formulating the relationship between 

these parameters due to its covariance functions and therefore can be helpful in 

investigating the internal operation of wind turbines. In this chapter, wind turbine 

operational curves using GP models are presented which can be used to assess 

underperformance of wind turbines and thus improve their condition monitoring 

The accuracy of a GP power curve depends upon the quantity and quality of the 

data but can yield accurate results based on limited data. The estimated 

operational curves evaluated by performance error metrics, QQ plots, and 

Residuals analysis; suggest that GP models can estimate the operational curves 

accurately while QQ plot analysis concludes that GP operational curves 

distribution functions are close to the Gaussian distribution. 

The comparative studies of operational curves based on GP and binning is 

presented where models uncertainty analysis carried out by CIs (for GP) and error 
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bar (for binned). For a binned power curve, the data variation is highest on the 

rising section of the power curve (Figure 5.19). By comparing a binned power 

curve with a GP power curve, it is found that the latter is more accurate over the 

rising section of the power curve (see Figure 5.20).  While by comparing a binned 

pitch curve with a GP pitch curve, it is found that the uncertainty is smaller as 

compared to binned pitch curve in the cut in to cut out wind speed range, see 

Figure 5.22. The GP rotor curves models uncertainty suffers due to the 

assumption of constant noise values across the speed range, but in a binned rotor 

power curve, the data variation is highest on the rising section of the rotor power 

curve hence perform relatively better, see Figure 5.26 and 5.27. For a binned pitch 

curve, the data variation is highest between a cut in and cut out wind speed range 

of the pitch curve (Figure 5.23). Apart from GP rotor curves, treating noise value 

constant across the range give reasonable accurate results in other operational 

curves. 

In this chapter, operational curves based on the GP model are constructed and its 

importance in SCADA based wind turbines condition monitoring outlined. The 

GP operation curves are then compared against binned based operational curve 

and comparative analysis suggests that GP based operational curve if used as a 

reference model and passed unhealthy data, fault detection and or performance 

deviations effectively assessed via uncertainty analysis based on CIs.  

In upcoming chapters, a reference operational curve would be undertaken for 

modelling fault detection algorithm and is then compared against available 

approaches to judge the effectiveness of operational curve based fault detection 

models.  
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Chapter 6 

 

Incorporating Air density into the Gaussian Process 

models 

Power curves facilitate the prediction of power production at a site and are also 

useful in identifying the significant changes in turbine performance which can be 

vital for condition monitoring. However, their accuracy is significantly 

influenced by changes in air density, mainly when the turbine is operating below 

rated power [141]. Air density is directly calculated from the measurement of 

ambient air temperature and pressure. Critical analysis of temperature correction 

is vital for accurate power curve modelling and application to condition 

monitoring. Power performance is significantly affected by air density, and thus 

appropriate investigation needs to be performed on various conceivable air 

density approaches and their effect on Gaussian Process (GP) power curve 

modelling. A suitable air density approach selection for GP models not only can 

improve the power curve fitting but is vital for constructing robust GP power 

curve models for anomaly detection. 

The primary objective of this chapter is to explore whether IEC (a traditional 

approach) to air density correction is the most effective when estimating power 

curves using a GP model. To do this definitively, datasets from turbines located 

in extremely low and high-temperature regions will be used. Since temperature is 

the most noteworthy factor influencing air density, these datasets have air density 

values that are very far from the IEC Standard air density, and this is key to 

understanding its role in GP power curve models. 
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6.1 Background and Motivation 

Power generation from a wind turbine operating below rated power is in theory 

proportional to air density. The IEC Standard (61400-12-1), [141], references the 

power curve, known as the standard power curve, to a given standard reference 

air density. Wind turbine manufacturers supply these standard power curves, and 

these provide the commercial basis of sales contracts. Accurate wind power 

forecasting requires accurate power curves and ensures low wind curtailment and 

underpins efficient wind project planning for construction and operation. 

Moreover, improved power estimation is also helpful in providing a better 

prediction of the impact of extreme weather on wind power systems. While 

constructing a forecasting model, particular attention needs to paid to the 

uncertainty associated with the forecasts. Jianzhou Wang et al. [144], proposed a 

nonparametric system to forecast wind speed uncertainty based on recurrence 

analysis techniques. Based on chaos theory, this approach models the inherent 

dynamic characteristics of wind speed which assists in exploring the modelling 

of uncertainty. Also, the same authors, [144], constructed a frequency domain 

(modal) model to represent uncertainty and results show that this is a more 

effective and robust than the benchmark models.  

Energy produced by a wind turbine is stochastic in nature, hence accurate 

estimation of any change in conditions is necessary, [145].        

Particular attention needs to be paid to the air density since it significantly affects 

wind power generation and its accuracy. For example, the BARANI Company, 

[142], concludes that weather influences air density significantly and air density 

can impact wind energy income generation by up to 10%. Unless compensated 

for, air density changes will add considerable uncertainty to estimates of long-

term energy yield from wind turbines. Air density depends on the specific wind 

farm locations and most notably on site elevation and ambient temperature, as 
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demonstrated by [146]. Zahariea and Husaru, [147], confirmed that air density 

correction (via temperature and pressure) should be implemented when 

undertaking wind resource assessment and for estimating the performance curve 

of a wind turbine.  The author of [148] has shown that assuming air density to be 

constant reduces the accuracy of power generation estimates, and so it is 

advisable to select air density based on the actual wind farm on-site conditions. 

Here the authors used two wind generators of rated values of 7.5 kW (small-scale) 

and 850 kW (medium-scale) to analyse the impact of air density on wind 

generator efficiency. Jung and Kwon, [149], proposed an artificial neural network 

(ANN) based on error functions to estimate the annual energy production of WTs 

and results confirmed it is relatively more accurate than conventional ANNs. The 

authors of [149] utilized three conventional ANN models based on input 

selections, and these are: a) ANN1 : just wind speed at the reference site used as 

input; b) ANN2:  both wind speeds and directions used as inputs at the reference 

sites and c) ANN3: used both parameters of ANN2 however in different ways 

(rather than using the speed and angle, it used x- and y-components of the wind 

velocity vector). In Ref. [149], the authors proposed two ANN models; ANN4 

and ANN5 in which the inverse of the frequency of the wind speed and power 

performance curve were used respectively. Both proposed models used the 

different types of the parameter to calculate the weight applied to each set of 

training data (𝐶𝑘). In contrast, the authors of [149] excluded air density variations 

from their proposed models and argued that its impact in contrast with wind speed 

variation was limited since energy production is proportional to air density but to 

the cube of the wind speed.  This may be true, but does not support the exclusion 

of air density from energy yield modelling.  Hau, [150], has highlighted that the 

difference between air densities recorded at sites with a difference in height of 

hundreds of meters can be such to significantly influence the power performance 

of a turbine, and thus should not be ignored. Chi Yan and Cristina L. Archer, 
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[151], carried out an investigation on the effect of compressibility on the 

performance or large horizontal-axis wind turbines (HAWTs).  As part of this 

study, the authors found that treating air density as constant caused a direct 

change in power estimation. The work showed that relating compressibility to 

changing air density slightly degraded the turbine efficiency, confirming the 

relationship between air density and turbine performance. Liu and Liu, [152], 

found a significant deviation from standard air density in inland regions of China 

that are located at a substantial height above sea level; this is further confirm the 

importance of air density in estimating the power output of a turbine. 

Following the IEC Standard, wind turbine power curves are calculated using a 

data reduction technique known as binning. Air density correction is carried out 

before binning. However, binning is not necessarily the most effective way to 

generate a power curve from wind speed and wind turbine power data.  As 

discussed above, many approaches have been proposed that include air density in 

parametric and non-parametric curve fitting approaches; further examples are 

[114] and [153].  

6.2 Chapter novel contributions 

Improving yields from wind farms is vital to operators, and consequently, the 

need for accurate power curve modelling is increasing. As described above, 

power performance is affected by air density, and thus appropriate investigation 

needs to be undertaken to assess the various conceivable air density compensation 

approaches and their effect on GP power curve modelling.  

According to the IEC Standard, as mentioned above, air density correction is 

required prior to binning. However, there is uncertainty as to whether this 

approach will also give the most accurate results when using a GP for curve 

fitting. An important observation regarding air density correction was found in 

[154], where two different windfarm datasets were used in a GP model.  For one 

of these data sets, the model accuracy marginally improved by avoiding the 
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standard air density pre-correction. In the present work, data sets with significant 

air density variations have been explored to confirm the tentative conclusions of 

[154].  

In this chapter different kinds of air density compensation, approaches are 

explored (including the IEC Standard approach) within a GP model, and their 

impact on power curve accuracy is assessed.  This will lead to an improved air 

density compensation approach that will prove valuable for the construction of a 

robust GP algorithm for anomaly detection and other purposes. This the 

motivation for the work presented here. 

To make a definitive assessment, datasets from turbines located in extremely low 

and high-temperature regions will be used. Since temperature is the most 

noteworthy factor influencing air density, these datasets have air density values 

that are very far from the IEC Standard air density, and this is key to 

understanding its role in GP power curve models. As mentioned above, reference 

[154] implied that the standard approach to air density correction might not be 

optimal. The fundamental role of this paper is to demonstrate this definitively for 

the first time and highlight the preferred approach. It is considered that this has 

significant implications for all applications of wind turbine power curves and 

specifically their utilisation in wind turbine condition monitoring. 

6.3 IEC Standard air density correction methods 

The IEC Standard acknowledges that pressure, temperature, and humidity at the 

wind farm site affects the air density and so power generation. Out of these 

parameters, the temperature has the most significant influence on air density and 

considering its effect has resulted in improved power curves. IEC Standard 

(61400-12-1), suggest two methods for air density correction can be applied to 

the power curve depending upon the power control system (i.e., pitch or stall 

regulated). SCADA datasets used in this paper are from pitch regulated wind 
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turbines (WTs) and thus following the IEC Standard, the equations (5.2) and (5.3) 

(of chapter 5) are used to calculate the corrected wind speed 𝑉𝐶 , 

The air density 𝜌 is related to temperature by the gas law p =
𝑝

(𝑅.𝑇)
 ; where p is 

absolute atmospheric pressure, R  the gas constant and T is the ambient 

temperature in Kelvin. The pressure p changes with altitude and can thus vary 

noticeably according to the location of the wind turbine. The ambient temperature 

significantly affects the air density and hence power capture of a turbine. Because 

of the significant influence of temperature on air density, air density correction is 

sometimes referred to as temperature correction. The power output of the WTs 

are affected by the weather due to associated air density variations. For a given 

speed, a WT can produce notably more power in cold weather (due to higher air 

density) as compared to summer. Henceforth correct air density adjustment is 

vital for accurate power measurement and prediction forecasting. In power curve 

analysis, a standard value for air density is used to reflect a typical average air 

temperature adjusted to sea level.  

6.4 Proposed air density correction approaches  

As already described above, many published papers have used the IEC Standard 

air density correction to calculate wind turbine power curves. However, almost 

no work has been carried on exploring different types of air density correction 

approach and their impact GP power curve accuracy and uncertainty. This chapter 

tries to fill this gap by considering four different approaches to compensate (or 

not) for air density effects when using a GP model rather than binning to identify 

the power curve.  These are: 

a) no pre-correction and air density not included in the GP model 

b) no pre-correction but with air density included within the GP model 

c) pre-correction applied but without air density in the GP model, and 

d) with pre-correction and air density included with GP model. 
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These four approaches are assessed for their impact on the accuracy of the GP 

power curve model through the confidence limits associated with the fit and by 

statistical error metrics. SCADA datasets of WTs located in regions with extreme 

temperatures are used in order to highlight the changes in air density values and 

the importance of correction.  

Figure 6.1 summarises the proposed research methodology in which SCADA 

datasets featuring extreme temperatures are first filtered and then used to train the 

GP models. While doing so, four different proposed air density compensation 

approaches are incorporated into the GP models in order to analyse their impact 

on GP model accuracy and uncertainty. Confidence intervals, performance error 

metrics and calculated residuals are used to assess the impact of these four air 

density compensation schemes on the accuracy of the GP models. 

 

Figure 6.1: Flowchart of air density compensation approaches and GP models. 
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6.5 Extreme SCADA datasets description 

According to the IEC Standard (61400-12-1) guidelines, air density correction 

shall be applied when the site density differs from the standard value 

(1.225 𝑘𝑔 𝑚3⁄ ) by more than 0.05 𝑘𝑔 𝑚3⁄ . To ensure that, SCADA datasets 

from turbines located in extremely low (northern Europe) and high-temperature 

regions (southern Europe) will be used. Here, ‘extreme’ refers to the SCADA 

datasets that have the highest and lowest average monthly temperature values. 

Because temperature is the most noteworthy factor influencing air density. These 

datasets have air density values that are very far from the IEC Standard air 

density, and this is key to understanding its role in GP power curve models. For 

the sake of convenience, the two sites are designated as follows: 

                     A = northern Europe site;          B = southern Europe site. 

WTs SCADA datasets 

time period 

Total number of 

data points 

Average monthly 

temperature 

(℃) 

Standard 

density 

(𝒌𝒈 𝒎𝟑⁄ ) 

Mean absolute 

difference 

(𝒌𝒈 𝒎𝟑⁄ ) 

 

A 

1/02/2010 -

28/02/2010 

 

4032 

 

-5.2775 

 

1.225 

 

-0.102 

 

B 

1/08/2010 -

31/08/2010 

 

4400 

 

29.7791 

 

1.225 

 

0.061 

Table 6.1: Description of selected monthly SCADA datasets from A and B. 

The datasets used are from the year 2010 for which February and August SCADA 

data from sites A and B record extreme average monthly temperatures 

of −5.277℃ at A and 29.779℃ at B. For these two particular months the air 

density differs by -0.102 and 0.061 from the IEC Standard value for sites A and 

B respectively as shown in Table 6.1. Thus both these datasets conform to the 

IEC Standard guideline described above for making air density correction. Note 

that all SCADA datasets used in this chapter comprise 10-minute averages with 



 
153 | P a g e  

 

maximum, minimum, standard deviation and an entire month of operational data 

from the two sites. 

Systematically remove SCADA data errors due to sensor failures will affect 

power curves and should as far as possible at the outset. Pre-processing and air 

density correction methods described in section 2.5 and 5.4 respectively are used 

to filter and air density correction. Table 6.1 summarises the datasets of turbine 

A and B. Set A starts with time stamp ‘‘1/02/2010 00:00 AM’’ and ends at time 

stamp ‘‘28/02/2010 23:50 PM’’ and contains 4032 measured values which 

reduced to 1205 data points after pre-processing, while B starts with time stamp 

‘‘1/08/2010 00:00 AM’’ and ends at time stamp ‘‘31/08/2010 23:50 PM’’ and 

contains 4400 which became 2068 data points after pre-processing. The GP 

models power curve models based on the entire training data and then used for 

further analysis. Figures 6.2 and 6.4 show the monthly unfiltered power curve 

data for the turbines at sites A and B respectively. Note that this data has not in 

any way been adjusted to reflect air temperature. As already mentioned, the mean 

absolute value of the air density for each of the WT has been calculated (Table 

6.1). The differences between the months can be useful in understanding the 

analysis of power curve fitting. Figures 6.3 and 6.5 are the filtered monthly power 

curves for the respective turbines after pre-processing.   

               

        Fig 6.2: Raw data for turbine A dataset   Fig 6.3: Filtered & corrected data for turbine A  
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         Fig 6.4: Raw data for turbine B dataset    Fig 6.5: Filtered & corrected data for turbine B        

6.6 Gaussian Process models under different air density 

compensation approaches 

The GP theory described in chapter 3 (realised in MATLAB) are used to model 

the power curve for the different approaches to air density correction, and results 

are illustrated in Figures 6.6 and 6.7. In order to evaluate the smoothness of 

estimate GP power curve model under different air density correction approaches, 

the standard deviations of the difference are calculated.  If the difference of 

standard deviation for measured values and estimate values are close and small, 

then it suggests the estimated power curve is smooth and of good fit. For example, 

standard deviations of the difference are calculated from the estimated GP model 

(of Figure 6.7) in which ‘no pre-correction but density included’ considered. The 

standard deviations of the difference for measured and estimated values are 22.79 

and 21.94; both calculated values are close and thus suggest the strong 

smoothness. The similar approach is being taken for GP power curve model based 

on different air density compensation approach. Result suggests that the standard 

deviations of the difference of estimated and measured values are very to each 

other in GP power curve based air density correction approaches for both extreme 

SCADA datasets. 
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Figure 6.6: GP power curve fitting for different air density approaches using site B data 

 

Figure 6.7: GP power curve fitting for different air density approaches using site A data 

The SCADA data of WT B has limited scatter and thus estimated GP power is 

smooth, see Figure 6.6. In contrast, the SCADA dataset of WT A is more scattered 

(due to the extremely low ambient temperature values) and also has fewer data 

points at the rising section of the power curve. This issue along with cubic 

inversion problem (due to the involvement of inverting a matrix of dimension 

equal to the number of data points) described in chapter 3 affects the GP model 

fitting accuracy and increases the computation cost, so striking a balance between 

the number of data points used and computation cost is critical for effective GP 
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modeling. For these reasons, the data sets will be restricted to a wind speed range 

of 8 to 14 m/s. For a wind speed range of 8 to 14 m/s, the two data sets have 

almost the same number of data points, and the data from turbine A is less 

scattered. It should be noted that the accuracy of a GP power curve depends upon 

the quantity and quality of the data. A low number of power-wind speed pairs 

may not give a smooth power curve while a high number is not desirable because 

of the numerical challenge of calculating the GP. 

6.7 Impact of different Air density compensation approaches on 

GP Power Curve models – A Comparative Study 

In this section, the accuracy of the GP power curves with the different approaches 

to air density compensation using the residual distributions and a range of 

statistical measures (MAE, MSE, MAPE, RMSE, 𝑅2) are presented . As mentioned 

above, to limit the size of the data set, the analysis will be restricted to the wind 

speed range of 8 to 14 m/s since the number of data points are reasonable within 

this range and also the number of data points resulting for sites A and B are almost 

the same and less scattered.  This has the further advantage that the measurement 

errors (assumed to be constant in the GP) are reasonably consistent. The mean 

absolute value of the air density correction, has been recalculated for this 

restricted wind speed range, and is shown in Table 6.2. 

Table 6.2: Mean absolute value of standard air density correction for restricted range data sets 

 

 

Site Standard density Mean absolute density 

difference 

Total number of data points 

used 

A 1.225 0.099 1114 

B 1.225 0.062 1116 
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6.7.1 Uncertainty assessment using confidence intervals 

A GP power curve model intrinsically represents fitting errors and thus model 

accuracy. An accurate assessment of a GP power curve can be done using 

confidence intervals (CIs) that are useful to portray how individual air density 

approaches affects the GP model uncertainty. GP power curve fitting comes with 

intrinsic confidence intervals (that reflect the standard deviation of the model), 

and thus provides information on the uncertainty surrounding an estimation but 

are itself a model-based estimate. Data points that lie outside of the confidence 

intervals can be considered anomalous, signifying a potential malfunction of the 

WT. Also, uncertainty signifies the ‘goodness’ of the estimated fit. Confidence 

intervals are a useful measure of uncertainty and the precision of model estimates.  

Recall from chapter 3, the confidence intervals of the GP model is calculated by 

equation (6-3), 

                              𝐶𝐼𝑠 = 𝑓 ∗̅̅ ̅̅ ± 2√𝑉𝑎𝑟[𝑓 ∗]                                                (6-3) 

In equation (6.3), CIs signifies the pointwise mean plus and minus two times the 

standard deviation for given input value (corresponding to the 95% confidence 

region which represents the significance level of 0.05), for the prior and posterior 

respectively. CIs have been calculated for the restricted data sets for sites A and 

B and plotted against the wind speed and are shown in Figures 6.8 and 6.9. The 

result suggests that the traditional approach to air density correction does not 

yield the most accurate GP model. The most accurate approach is not to undertake 

air density pre-correction but to include air density within the GP model. 
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Figure 6.8: Uncertainty assessment in terms of confidence intervals for different air density 

approaches with limited data set for site A 

 

Figure 6.9: Uncertainty assessment in terms of confidence intervals for different air density 

approaches with limited data set for site B 

6.7.2 Performance error metrics 

Five performance error metrics (described in chapter 3), namely mean absolute 

error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), 

root mean square error (RMSE) and coefficient of determination (𝑅2) are 
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calculated. They are used here to assess the accuracy of the GP power curve 

models for the different air density correction approaches. The results of these 

statistical measures confirms that adding density into GP model that uses data 

that have not been pre-corrected for air density gives the most accurate result as 

compared to other GP models and results as shown in table 6.3. The conclusion 

is that with a GP model, pre-correction does more harm than good, and this is 

assumed to be due to the imperfect nature of the pre-correction. 

Continuous rank probability score (CRPS) is another performance error metric 

which measures the closeness of forecast distribution and corresponding 

observation. This score is widely used for checking the forecast accuracy. The 

CRPS is related to the rank probability score but compares a full distribution with 

the observation, where both are represented as cumulative distribution functions.  

Though CRPS not being used in this thesis but would be used in future research 

work. 

GP models WT- A 

 

WT-B 

MAE MSE MAPE RMSE 𝑅2 MAE MSE MAPE RMSE 𝑅2 

No pre-

correction and 

air density not 

included in the 

GP model 

 

18.01 

 

568.07 

 

9.43 

 

23.83 

 

0.87 

 

5.19 

 

43.09 

 

2.46 

 

6.56 

 

0.98 

No pre-

correction but 

with air 

density 

included 

within the GP 

model 

 

16.81 

 

506.96 

 

8.95 

 

22.51 

 

0.89 

 

4.62 

 

33.01 

 

2.20 

 

 5.74 

 

0.98 

Pre-correction 

applied but 

without air 

density in the 

GP model 

 

18.50 

 

598.09 

 

9.68 

 

24.45 

 

0.87 

 

4.73 

 

35.46 

 

 2.25 

 

 0 .95 

 

 0 .98 

With pre-

correction and 

air density 

included with 

the GP 

 

16.86 

 

510.01 

 

8.99 

 

22.58 

 

0.89 

 

4.64 

 

33.34 

 

 2.21 

 

 5.77 

  

 0.98 

     Table 6.3:  Statistical measures of GP fitted models under different air density approaches 
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6.7.3 Residual distribution analysis using QQ plots 

The distribution of the residuals can also be informative in the context of GP 

models. Figures 6.10 and 6.12 are the QQ plots of different air density 

compensation approach. The effect of different air density compensation schemes 

on the GP model residual distribution is significant and seen by distribution fits 

for all the data sets as shown in Figures 6.11 and 6.13.   

 

Figure 6.10: QQ plot for restricted datasets, A 

 

Figure 6.11: Residual histogram with distribution fit, A 
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Recall from chapter 5, A quantile-quantile or QQ plot is a simple graphical 

method used to compare collections of data with possible theoretical distributions 

and can help in distribution function identification. Therefore, the QQ plots are 

used in this chapter for GP power curve distribution analysis for different air 

density compensation techniques. For GP models, the residuals should be 

Gaussian distributed. QQ plots comparing the residual distribution with a 

Gaussian distribution have been calculated for the four different cases and 

assessed regarding RMSE differences from the ideal unity gradient line. Table 

6.4 shows that the case of no pre-correction but with air density include within 

the GP model results in residuals most closely conforming to a Gaussian 

distribution for both wind turbines A and B. This adds to the case that the GP 

model is more accurate with no pre-correction, but with air density included 

within the GP power curve model. 

 

Figure 6.12: QQ plot for restricted datasets, B       
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Figure 6.13: Residual histogram with distribution fit, B 

Sr.no GP models site A 

 

site B 

1 No pre-correction and air density not 

included in the GP model 

2.292 1.530 

2 No pre-correction but with air density 

included within the GP model 

0.641 0.475 

3 Pre-correction applied but without air 

density in the GP model 

2.020 0.545 

4 With pre-correction and air density 

included with the GP 

0.650 0.476 

Table 6.4:  RMSE for different density approaches from QQ plot. 
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6.8 Chapter conclusions 

Air density corrections are essential for accurate power curve modelling. With 

the possibility to include air density within GP models, various alternative 

approaches are possible. This chapter has proposed four air density correction 

approaches and assessed their differing impact on GP WT power curve model 

accuracy. Two SCADA datasets were used that satisfied the IEC Standard 

guideline which states that the air density correction should only be applied when 

the site density differs from the standard value (1.225 𝑘𝑔 𝑚3⁄ ) by more than 0.05 

𝑘𝑔 𝑚3⁄ . The results demonstrate that the best option is not to use the IEC 

Standard correction before applying the GP model. Error performance metrics 

suggest that separately adding density directly into the GP power curve model, 

without any pre-correction gives the most accurate results, see Table 6.3. 

Furthermore, QQ plot analysis, as provided in Table 6.4, confirms this result. In 

short, from this chapter we conclude that air density corrections can be 

significant; the best option is not to apply the Standard IEC correction before 

applying the GP model. This will not only help in power curve modelling but also 

supports the construction of robust algorithms for anomaly detection via CIs. 
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Chapter 7 

 

Anomaly detection using Gaussian Process models 

 

In this chapter, an anomaly detection algorithm based on Gaussian Process (a 

non-parametric machine learning approach) models is proposed. The standard 

IEC binned power curve together with individual bin probability distributions can 

be used to identify operational anomalies. The IEC approach can also be modified 

to create a form of the real-time power curve. Therefore, two algorithms based 

on binning will be compared with a Gaussian Process anomaly detection 

algorithm to assess both speed and accuracy of anomaly detection. Power loss 

and downtime due to wind turbine rotor yaw misalignment are significant and are 

therefore presented as a case study to demonstrate the effectiveness of the 

proposed algorithms and allows the advantages and limitations of the proposed 

methods to be determined. 
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7.1 Background and Motivation 

The primary role of wind turbine (WT) power curves is to provide a benchmark 

for performance for use in purchase contracts. The measurement and data analysis 

procedures have been developed over decades and are represented in an 

International Standard, IEC [141]. There remain issues of accuracy, and it is 

recognised that changes in external factors such as atmospheric stability, and 

associated with this wind shear and turbulence, can influence the power curves in 

ways that are not fully understood [155,156]. The power curves are 

conventionally calculated using the ‘method of bins’ technique prescribed by the 

IEC Standard and briefly described in chapter 5. This involves binning the data 

into 0.5 m/s wide wind speed intervals, and then calculating the average power 

and wind speed for each bin. The power curve is a smooth curve drawn through 

these points, but in actuality is only defined precisely at the points themselves. 

Many papers have been published that seek an alternative approach to fitting 

power curves to the data.  These fall broadly into two categories: parametric 

methods such as a polynomial curve fitting; and non-parametric methods, often 

using machine learning techniques. These were briefly described in chapter 2. 

Kernel methods are non-parametric and a supervised learning form of pattern 

recognition related to Gaussian Processes (GPs); they have been applied to wind 

turbine power curves. In [157] data from two turbines were analysed and the 

identification of blade icing was demonstrated. The same authors have also 

explored an approach based on eigenvalue analysis, [158]. A kernel plus method 

has also been applied, [159], to overcome identified shortcomings of a 

multivariate kernel regression.  Air density, turbulence intensity, and wind shear 

are the additional variables considered.  Similar data has been analyzed by the 

same team using the more conventional additive multivariate kernel method, 

[160]. 



 
168 | P a g e  

 

 

Many of the published methods concentrate solely on the power curve, but 

apparently there is valuable information in the spread of data, for example, the 

probability distribution of power points in a given wind speed bin of a 

conventional power curve.  Both Gaussian Process theory and Copula models 

intrinsically provide confidence bounds for the fitted power curve, and these are 

dealt with in more detail below. 

Copula models provide an effective means of representing a non-linear 

relationship between two variables; they can thus be applied to wind turbine 

power curves.  An early paper, [88], outlines how Copulas can be fitted to wind 

turbine power curve data.  In [161], Copula fitting has been used to exclude 

outliers when calculating power curves. 

Gaussian Processes (GPs) are very general non-linear models where training is 

undertaken to select the best hyperparameters which define the covariance 

function.  Comparative studies of stationary covariance functions have been 

undertaken in chapter 3. The results show that rational quadratic functions 

perform almost as well as squared exponential covariance functions although 

prediction speed and training time took are longer. Therefore, the squared 

exponential covariance function based GP model gives the relatively better 

results and is used for all GP models from now onwards. 

This chapter proposes a range of algorithms for condition monitoring based on 

probabilistic GP and binning methods. A comparative assessment of promising 

approaches has been undertaken in terms of their capability to detect in advance 

(and by how much) signs of failure.   
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7.2 Chapter novel contributions 

In this chapter, we propose a novel approach based on a Gaussian Process (GP) 

for anomaly detection. Yaw misalignment is used as a case study for this work. 

To assess the GP model effectiveness, two other methods, based on binning are 

constructed and then compared with the GP fault detection algorithm. The 

outcomes of this chapter demonstrate that the GP model was able to detect the 

anomaly effectively with the alarm raised only 1.5 hrs after the fault first 

occurred. Not only is the GP method able to detect the yaw misalignment quickly, 

but it produces no false positives, in contrast to other bin based models (described 

in upcoming sections), hence confirming that the GP approach provides both fast 

and robust fault identification. The highlights of this chapter are as follows: 

 A SCADA based Gaussian Process model for anomaly detection of a wind 

turbine.  

 Two probabilistic binning methods developed for validating the 

effectiveness of the GP model. 

 A case study exhibiting wind turbine rotor yaw misalignment is presented 

and used for testing the proposed models. 

 Gaussian Process models are shown to be able to detect anomalies quickly 

and without any false positives. 

7.3 SCADA datasets description  

The SCADA data sets used in this study are from operational wind turbines 

located in Scotland, UK, and contain more than 100 different signals, ranging 

from the timestamp, calculated values, set points, measurements of temperature, 

current, voltage, wind speed, power output, wind direction and so on.  
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Due to sensor failure and data collection faults SCADA data is not itself without 

some errors. Such errors will affect power curves and should be systematically 

removed at the outset. Criteria briefly described in section 2.5 such as timestamp 

mismatches, out of range values, negative power values, and turbine power 

curtailment are considered to be misleading and have been filtered out as 

summarised in Table 7.1.  All the SCADA data considered here consists of 10-

minute averages with maximum, minimum, and standard deviation over the 10 

minutes also being recorded. The data used in this chapter is coming from 2.3  

                                     Table 7.1: Description of the SCADA datasets 

MW Siemens turbines. Table 7.1 summarises two datasets: dataset 1 beginning 

with time stamp ‘‘11/1/2008 14:30 PM’’ and ending at time stamp ‘‘30/03/2008 

15:20 PM’’; and data set 2 beginning with time stamp ‘‘14/4/2009 11:20 AM’’ 

and ending at time stamp ‘‘16/4/2009 9:50 PM’’. Dataset 1 contains 4725 

measured values which reduced to 3274 data points after pre-processing and was 

used to develop power curve models based on binning and a GP, as described in 

upcoming sections. Dataset 2 included 201 data points and was used to test the 

performance of the model learned from dataset 1.  

7.4 Yaw misalignment a case study 

Wind direction is not constant; it always changes. A wind turbine generates most 

effectively when the rotor is facing directly into the free oncoming wind; the yaw 

drive and control system tracks changes in wind direction. A wind vane, located 

Data set Start timestamp End timestamp Description 

1 11/1/2008 14:30 PM   30/03/2008 15:20 PM Total data filtered set: 

3274 observations 

2 14/4/2009 11:20 AM 16/4/2009 9:50 AM Total data set: 

201 observations 
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on the nacelle behind the rotor blades (Figure 7.1), is used to control the alignment 

of the wind turbine. Nevertheless, an erroneous yaw error signal can result from 

turbulence generated with the passage of the blades despite sophisticated 

corrective software, and this will result in a degree of so-called yaw error where 

the turbine rotor is not correctly aligned. The wind vane measures the yaw error 

mounted on the rear of the nacelle. Significant yaw misalignment, reflecting a 

yaw control error or fault, results in a loss of power, and additional rotor loads. 

Such a fault is quite common, and early detection is essential to prevent loss of 

power generation and excessive fatigue damage.  

In addition to the challenge of measuring wind direction on the nacelle, any 

misalignment of wind vane itself will contribute to yaw error.  Moreover, large 

wind turbine rotors must be yawed slowly to limit gyroscopic loads and thus 

cannot follow rapid changes in wind direction. All this means that some level of 

operational yaw error is inevitable.  This average yaw misalignment will result in 

some reduction to the annual energy production (AEP). As reported in [162] an 

average of 6.2° of misalignment causes an estimated 2% reduction in AEP with 

roughly a loss of 2 to 3 % for 9° to 10° of average yaw error. As well as the 

operational yaw error outlined above, faults can develop with the yaw control 

system.  Early detection of such yaw control faults is vital to avoid loss of power 

production and associated revenue [163], but also to minimise fatigue damage 

and reduce maintenance costs, [164], increase life of turbine, [165], and reduce 

the levelized Cost of Electricity (LCOE) and improve the return on investment 

(ROI), [166].   

The dependence of wind turbine power production on yaw error is reasonably 

explained by the cosine cubed theory, [168], which states that power output is 

scaled by the cube of the cosine of yaw error (differences between wind direction 

and the nacelle direction).  Although not perfect, this law estimates that a large 

yaw error of 20° will lead to a significant power deficit of 17%. Such power 
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deficit is unlikely to acceptable to a wind farm operator. Because of the strong 

link between yaw error and power production, such faults can provide excellent 

test cases with which to test power curve anomaly detection algorithms.  

 

Figure 7.1: Schematic of wind turbine system, [167] 

7.5 Construction of reference power curve using Gaussian Process 

In recent years, the importance of power curves in the potential use of wind 

turbine condition monitoring has been recognised and very attractive from the 

industry point of view. Significant changes in the power curve can be an 

indication of performance change most likely due to faults. SCADA based power 

curve algorithms are cost-effective and widely used for the identification of 

performance and or condition changes. As part of this, chapter 5 described the 

different new methods based on power curve and how these can be used for 

analysing the turbine performance, failure detection and power optimisations 

briefly. In most cases,  the SCADA based power curve data is 10 minutes 

averaged pairs of net wind turbine power, and hub height horizontal wind speed 
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at a suitable distance in front of the rotor (between 2 and 4 rotor diameters in the 

Standard), or, alternatively taken from the nacelle anemometer. 

10-minute SCADA data from a healthy turbine are utilised for reference power 

curve construction. These air density corrections (outlined in section 5.4) also 

applied to the unhealthy turbine data so that it can be evaluated against the 

reference power curve in a consistent manner. The power curve data shown in 

Figure 7.2 is after the filtration and air density correction. Using the GP theory 

(described in chapter 3), a power curve is constructed from filtered, and air 

density corrected SCADA data and is shown in Figure 7.3. As can be seen clearly 

in Figures 7.2 and 7.3, the GP power curve is smooth (smoothness rough estimate 

is done by calculating the standard deviation of the differences see figure 6.7 ), 

accurate and represent the expected characteristics of the power curve. It should 

be noted that the estimated power curve is based on held out data. 

 

Figure 7.2: GP power curve comparison 
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Figure 7.3: GP estimates of power generation time series 

7.6 Methodologies to be compared 

Wind turbine performance analysis is presently an active area of research. This 

chapter is focused on performance as represented by fitted power curves.  

 Power curve comparison 

Power curves can play a vital role in identifying anomalous operation reflecting 

insipient fault development. Information related to statistically significant power 

curve deviations is thus essential. Such deviations could be due to anemometer 

error, power transducer calibration error or controller setting error. A consistent 

significant deviation from the reference power curve may be due to blade 

damage; yaw drive issues or possibly substantial wind shear or wind veer for 

below-rated operation, [169]. The IEC recommended approach uses binning; 

hence in order to evaluate the effectiveness of the GP model, two binning methods 

are described and a comparative analysis carried out. It is worth noting that the 

power deficit caused by yaw error is unlikely to be acceptable to a wind farm 

operator; hence, a yaw error threshold of 20 degrees has been chosen for binning 

algorithms. 



 
175 | P a g e  

 

Here, the reference power curve based GP and binning algorithms were 

constructed for failure detection. Identifying any statistically significant deviation 

from the reference power curve on the bin by bin basis for the binned reference 

power curve, and for the GP model using the inherent confidence intervals 

(described in chapter 3) approach is being adopted. The term ‘incoming’ is being 

used in the upcoming section that refers to the unhealthy SCADA data that tested 

against developed binning and GP model. 

 Fisher's combined probability test 

Statistical tools often need to combine the evidence obtained from assumed 

independent sources. In order to do so, a combined p-values concept is developed. 

The Fisher product test, [170], is a statistical test that combines p-values, based 

on the notion that several non-significant results occurring together may suggest 

significance and hence detect departure from the null hypothesis, 𝐻𝑜. The 

equation used for calculating the Fisher combined probability test is given as, 

                                     𝑋2𝑘
2  ~ − 2 ∑ 𝑙𝑛 𝑝𝑖

𝑘
𝑖=1                                            (7.1) 

Where pi is the probability that the 𝑖𝑡ℎ variable exceeds the measured value under 

the null hypothesis. Under the null hypothesis X2k
2  is the distributed as a chi-

squared variate with 2𝑘 degrees of freedom. Here, 𝑘 is the number of independent 

tests being performed. 

Apart from the Fisher method, other methods for combining p-values are briefly 

discussed in [171,172,173]. The applications for combining the p-values are 

numerous, including combining the results from independent studies and 

combining the results of individual component problems as part of an overall test, 

[174,175]. This approach will be used to construct an effective probabilistic based 

binning and for the GP algorithm, as is described in the upcoming sections. 
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For consistency, all the time series used in this work covers the same time period 

of 33 hours. On the graphs these are shown on a scale of zero to 200 (10-minute 

periods); in reality, the time series runs from 11:20 on 14-04-2009. 

 7.6.1 Probabilistic assessment of incoming data using a binned power curve 

This algorithm uses a probabilistic approach to identify anomalies associated with 

incoming power-wind speed data, point by point. A reference binned power curve 

has been constructed following the IEC recommendations using the pre-

processed power curve (of Figure 7.2) where it is binned by the standard 0.5 m/sec 

wide wind speed intervals, see chapter 5. Figure 7.4 shows the reference binned 

power curve together with error bars. The two standard deviations (i.e., 95% 

confidence intervals) of measured power values are used to calculate the error 

bars which are used to measure the uncertainty associated with each bin of the 

power curve. It is worth noting that there is a slight deviation in power curve 

which is due to varying environmental conditions.  

 

Figure 7.4: Binned power curve with error bars 

Once the reference power curve has been constructed, the next step is to assess 

potentially unhealthy incoming data point by point against the appropriate bin 

and its uncertainty by probabilistic assessment. In the probabilistic binning 
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method, Fisher's combined probability test (described above) is used to multiply 

two sequential p values. After testing and validating various different numbers of 

p-values, it was found that two p-values gives the most effective performance, 

and hence will be used here. Two sequential values have been used here, but this 

could be extended if required to give greater confidence that the data points are 

anomalous, but that will affect the model performance in identifying the false 

alarm shown in this case.  A threshold of 0.005 (or significance level) is fixed in 

order to determine the aggregate number of anomalous bin values.  

A graph of yaw error together with alarm detection based on the probabilistic 

approach is plotted in Figure 7.5. From the graph, an anomalous performance due 

to yaw misalignment or a yaw drive control issue can be identified. This is further 

confirmed in Figure 7.6, where it can be seen that the nacelle is stuck in a fixed 

position for an extended period of time. It can be observed that the yaw error 

exceeds 20° consistently for timestamps 50 to 100. This anomalous performance 

was confirmed to be a yaw drive or yaw drive control issue. 

 

       Figure 7.5: Yaw error detection using a probabilistic assessment of binned power curve 
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Using this method, the first alarm recorded at 00:50 15-04-2009, approximately 

4 hours after the yaw fault was first identified (in Figure 7.5) at 21:00 14-04-

2009. It should be noted that this time series also indicates a limited number of 

false alarms.  Overall though, the proposed approach, based on the probabilistic 

binned power curve approach, allows identification of this significant 

performance issue and does this relatively quickly.  

 

Figure 7.6: Time series of wind direction and nacelle position 

7.6.2 Probabilistic assessment of incoming data using a real-time power 

curve 

Wang and Infield, [176], proposed an approach to anomaly detection by 

comparing a so-called real-time power curve with a reference power curve using 

Welch’s hypothesis test with a confidence interval of 99.5 %, i.e., a significance 

level of 0.005. Selection of this provisional figure was on an intuitive basis where 

the calculated likelihood is not unreasonable. A significance level of 0.005 was 

used to determine the aggregate number of anomalous bin values at each time 

point for an entire power curve. These are plotted as a time series as shown in 

Figure 7.7 and record the anomalous performance due to the yaw drive or yaw 
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drive control fault. Using this algorithm, an alarm would have been raised at 

03:00 on 15/04/2009, 6 hours after the fault occurs (at 21:00 on 14/04/2009).  

 

Figure 7.7: Absolute yaw error detection using online power curve model 

7.6.3 Probabilistic assessment of incoming data using a Gaussian Process to 

represent the power curve 

A GP power curve model intrinsically represents fitting errors and thus model 

accuracy where confidence intervals (CIs) are used to assess the model 

performance; the calculation and importance of CIs with regards to GP models 

uncertainty are briefly described in chapter 3. Here, CIs are used to assess the GP 

power curve, and the intervals provide information on the uncertainty 

surrounding an estimation but are themselves model-based estimates. Data points 

that lie outside of the confidence intervals can be considered anomalous, 

signifying a potential malfunction of the wind turbine. The GP power curve with 

CIs is shown in Figure 7.8, and this will be used as the reference GP power curve 

to detect the anomaly caused by yaw error misalignments.  
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Figure 7.8: Reference power curve fitting with confidence intervals using GP 

The CIs of 95 % reflects a significance level of 0.05 and was used in the GP 

model to determine the sequential anomalous data point values at each time for 

an entire reference GP power curve. The incoming data points are assessed on a 

point by point basis against the reference GP power curve and probabilistic 

assessment undertaken. The Fisher test as described above was used to combine 

2 p-values with a threshold of 0.008 applied to filter the individual p-values.  False 

alarms cause additional operational costs, and so it is desirable to construct an 

effective GP model that generates no false alarms. To achieve this, the GP is 

model adjusted by changing the probability threshold until no false alarms occur; 

a threshold of 0.008 gives accurate results with no false positives but slightly 

affect the GP model capability to detect the anomaly but does not affect the GP 

model overall performance and hence this threshold is used here.  

Figure 7.9 shows the effectiveness of the GP algorithm where the aggregate 

number of anomalous values at each time point is plotted as a time series together 

with absolute yaw error.  Using the GP algorithm, an alarm would have been 

raised at 22:40 on 14/04/2009, just 1.5 hrs after the start of the yaw fault at 21:00 

on 14/04/2009, as shown in Figure 7.9. Moreover, as described above, there are 
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no false positives, confirming that the GP approach provides both fast and robust 

fault identification. 

 

Figure 7.9: Absolute yaw error detection using GP model 

7.7 Performance comparisons of different methodologies 

A performance comparison of the three different approaches to detect power 

performance anomalies associated with a yaw control fault, in terms of speed of 

detection, are presented in this section. It is essential to detect the yaw error as 

quickly as possible otherwise if it remains undetected for a long time then it yields 

large yaw error that ultimately leads to enhanced damaged rates; hence the speed 

of detection here is given importance for detection performance comparison 

purposes. 

The response of the three models are brought together and plotted against the yaw 

error time series as shown in Figure 7.10. As can be identified from the nacelle 

position time series (Figure 7.6), the yawing fault started at 21:00 on 14/04/2009 

and hence this will be used as the benchmark to judge the capability each of the 

models’ capability to rapidly detect the fault.  
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Figure 7.10: Comparative analysis of different models for absolute yaw error detection 

By doing comparative analysis, it has been found that the GP approach is able to 

detect yaw error earlier, just 1.5 hours after the fault occurs, while probabilistic 

binning approach took around 4 hours, and the real-time power curve algorithm 

took 6 hours to identify the fault, as shown in Figure 7.10 and Table 7.2. Not only 

is the GP method able to detect the yaw misalignment quickly, but it produces no 

false positives, in contrast to the methods using the probabilistic binned power 

curve. 

Table 7.2: Alarm record and detection by each approach 

 

Models Alarm detected Time taken to identify   the 

fault 

Online  power curve model 3:00 on  15/4/2009 6 hours 

Probabilistic assessment using binning 00:50 on 15/4/2009 ~ 4 hours 

Probabilistic assessment using GP 22:40 on 14/4/2009 1.5 hours 
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7.8 Chapter conclusions 

GP models have been shown to provide an effective approach to power curve 

based condition monitoring. Models based on GP and binning have been analysed 

to assess their effectiveness in terms of capability to detect in advance (and by 

how much) anomalous performance related to yaw misalignment. Accurate 

modelling of the reference power curve is vital in the development of algorithms 

to detect such anomalies. The result of this chapter demonstrated that the GP fault 

detection algorithm detects anomalies faster, i.e., at 22:40 on 14/04/2009, just 1.5 

hours after the fault, which is considerably quicker than the two binning 

algorithms (took 4hrs and 6 hrs respectively).  

From turbine operator’s point of view, it is therefore vital to increase the effort 

spent on monitoring turbine health to reduce unscheduled downtime and 

operational costs. This early detection is helpful to avoid early replacement of 

healthy components and reduces the risk of reaching the catastrophic stage that 

causes significant downtime and high operational cost. This early detection also 

gives enough time for maintenance action in advance, as well as optimise the 

performance of wind turbines. The GP fault detection algorithm does not produce 

false positives, unlike the binning algorithms. Also, binning algorithms 

compromise accuracy due to the bin width selection because within each bin the 

measured power will depend strongly and non-linearly on wind speed and a wide 

bin would result in a systematic bias, and the need in practice to get sufficient 

data points in each bin to be of statistical significance. 

While dealing with GPs, it is important to note the data management challenge. 

Due to the inverse cubic problem, it is not desirable to include a large number of 

SCADA data points in the models, either for training or fitting. Some methods 

can help with this inverse cubic problem, but these still require high processing 

power and computational cost in dealing with large SCADA datasets. Hence 

striking a balance between these two is vital for GP model accuracy. 
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Chapter 8 
 

 

 

Gaussian Process models incorporating additional wind 

turbine parameters 

 

The IEC Standard 61400-12-1 recommends a reliable and repeatable 

methodology for computing the turbine performance where a data reduction 

approach called the ‘method of bins’ is used for accurate computation of the wind 

turbine power curve in which only mean wind speed at hub height and the air 

density are recognised as relevant input parameters. However, several literature 

studies have suggested that power production from a wind turbine depends on 

several critical variables, namely: rotor speed and blade pitch angle, commonly 

known as performance parameters of a wind turbine. Furthermore, the cubic 

relationship of power output and wind speed shows that the power generation of 

the wind turbines affected by rotor speed, blade pitch angle and therefore impact 

of these performance variables on GP models needs to be investigated.  

This chapter presents a technique that is computationally tractable and able to 

demonstrate the impact of these additional wind turbine performance parameters 

(blade pitch angle and rotor speed) on the GP power curve model accuracy and 

uncertainty.  Based on this analysis, an extended GP fault detection algorithm is 

constructed (in which yaw misalignment is used as a case study) and compared 

against the GP algorithm of chapter 7 in terms of their capability to detect in 

advance (and by how much) signs of failure, and also their false positive rate, by 

making use of extensive SCADA data and turbine fault and repair logs. 
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8.1 Motivation and chapter contributions 

The International Standard IEC 61400-12-1 provides guidelines for calculating 

power curve using the ‘method of bins’, but it does not include the dynamic 

effects of the different variables involved in the process.  The details of the 

binning method are described in chapter 5. As already described in chapter 4, 

many of the published nonparametric methods used the power curve for condition 

monitoring in which mean wind speed at hub height and the air density wind 

speed considered as suitable input parameters. However, the power output of a 

wind turbine is affected by various additional performance parameters, in 

particular, rotor speed and blade pitch angle, and also atmospheric parameters 

such as turbulence intensity and wind shear. Analysis of these parameters can be 

useful for robust condition monitoring of a wind turbine.  

The power output of the turbine is directly proportional to swept area, power 

coefficient and wind speed where the power coefficient is a nonlinear function of 

the tip speed ratio (TSR) and blade pitch angle.  TSR relies upon wind speed, and 

rotor speed, subsequently pitch angle and rotor speed affect the power 

performance of wind turbines. The pitch angle and rotor speed are referred to as 

WT performance parameters since they affect the power production of turbines.  

Discussion of these parameters was briefly presented in chapter 5. The 

atmospheric parameters (wind shear and turbulence intensity) also affect the GP 

models accuracy and uncertainty, but these are not included in this chapter. 

The uncertainty and stochastic nature of wind power make operation and planning 

a challenging task; henceforth the influence of these performance variables on 

nonparametric models is essential in order to improve model accuracy and reduce 

uncertainty to construct robust fault detection algorithms that have a capability to 

detect failures quickly without any false positives. However, the influences of 
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these additional performance parameters on nonparametric models have never 

been explored. The research present in this chapter tries to full fill this gap. 

In this chapter, GP power curve models were constructed with the inclusion of 

these additional wind turbine performance parameters directly from data instead 

of using the underlying physics and detailed analysis has been carried out. 

Furthermore, comparative studies are presented in order to find out the most 

influencing performance parameter that affects the GP model accuracy and 

uncertainty significantly. After finding the most prominent performance 

parameter, the fault detection algorithm is constructed in which the most 

prominent performance parameter is used.  After that, the constructed algorithm 

is compared with the algorithm of chapter 7 to assess its effectiveness in terms of 

speed of fault detection and false positive alarms. 

8.2  Inclusion of wind turbine performance parameters into 

Gaussian Process models 

As already described in chapter 3, a GP model is mathematically expressed by its 

mean and covariance function (or kernel). The general covariance matrix, 𝐾, 

gives the variance of each variable along the leading diagonal, and the off-

diagonal elements measure the correlations between the different variables 

mathematically described as follows, 

                                     𝐾 =  [
𝑘11 ⋯ 𝑘1𝑛

⋮ ⋱ ⋮
𝑘𝑛1 ⋯ 𝑘𝑛

]      Where 𝑘𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) 

𝐾 is of size 𝑛 ×  𝑛, where 𝑛 is the number of input parameters considered, and it 

must be symmetric and positive semidefinite i.e. 𝐾𝑖𝑗 = 𝐾𝑗𝑖 .  

Due to multivariate nature of a GP, 𝑛 = number of predictors selected for GP 

model where 𝑥 represent the wind speed along with wind turbine performance 

parameters (rotor speed and rotor speed) to facilitate analysis of the effect of  

performance parameters on GP models.   
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Using GP theory (described in chapter 3), a power curve based on the GP model 

incorporating the additional performance parameters (rotor speed and pitch 

angle), included individually in the GP model along with wind speed, is 

constructed. The squared exponential covariance function is used to construct GP 

models since it has been found to be most suitable covariance function for wind 

turbine condition monitoring purposes, see chapter 3. Figure 8.1 shows the 

estimated power and measured power values in time series where the impact of 

these performance parameters on GP models are clearly shown.  The inclusion of 

rotor speed makes a significant improvement in prediction thought the inclusion 

of blade pitch also improves the model but not to the same extent, as shown in 

Figure 8.1. This leads to the investigation of performance parameter impacts on 

GP model accuracy and uncertainty, as described in upcoming sections.  

 

Figure 8.1: Estimated GP power curve comparison in time series with the inclusion of 

performance parameters  
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As already described in previous chapters, GP models provide a probabilistic 

framework for performing inference over functions. For a given observed data 

and new input, estimation corresponds to computing the (Gaussian) predictive 

distribution of the associated output, whose mean can be used as a point estimate. 

The obtained predictive variance gives confidence intervals (CIs) on this estimate 

which is useful in analysing the uncertainty associated with GP models and used 

here to investigate the impact of performance parameters on GP models 

uncertainty. It is worth noting that GP model uncertainty uses probabilistic 

descriptions of the model input which can be used to derive probability 

distributions of model outputs and system performance indices as briefly 

described in chapter 3. 

 Gaussian Process model incorporating blade pitch angle  

The rotor power coefficient is a function of blade pitch angle which is used to 

regulate power production from a wind turbine. Averaging the angles of the three 

blades (in case of a three-bladed wind turbine) gives the value of pitch angle, and 

this is adjusted under normal operation to capture the maximum power below 

rated power and to limit power output above rated wind speed. Therefore it affects 

the power production and shape of the power curve as so should be considered 

within the GP power curve model.  

The GP based power curve obtained by theory (described in chapter 5) in which 

blade pitch angle is incorporated into the squared exponential covariance function 

along with wind speed as described in section 8.3 is shown in Figure 8.2. Figure 

8.2 suggests that the inclusion of pitch angle improves the GP model accuracy 

and reduces uncertainty up until rated wind speed and after that its accuracy and 

uncertainty deteriorates; this is because above-rated wind speed blade pitch is 

controlled to regulate the power.  
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Figure 8.2: Estimated GP power curve with the inclusion of pitch angle 

As already described, the calculated CIs are used for GP model uncertainty 

analysis; this is plotted against wind speed and compared against with GP without 

the inclusion of pitch angle model. Figure 8.3 suggests that when blade pitch 

angle incorporated GP power curve model, the model uncertainty is reduced. The 

improvement is seen between the cut in and rated wind speed where maximum 

power tracking takes place which is the most critical wind speed region for 

condition monitoring purposes. At above-rated wind speed, uncertainty 

deteriorates, but it is not an issue since above-rated speed, turbine operation 

control by operators. 
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Figure 8.3: GP models Uncertainty analysis when pitch angle incorporated 

 Gaussian Process model incorporating rotor speed 

Like pitch angle, the rotor speed can be incorporated into squared exponential 

covariance function as per methodology described above. The resulting estimated 

power curve is then compared with a measured power curve as shown in Figure 

8.4. The inclusion of rotor speed improves the GP power curve model accuracy 

across the entire wind speed range, see Figure 8.4.  

 

Figure 8.4: Estimated GP power curve with the inclusion of rotor speed  
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Figure 8.5: GP models Uncertainty analysis when rotor speed incorporated  

The estimated CIs values are plotted as a function of wind speed for GP model 

uncertainty analysis purposes as in Figure 8.5. The GP power curve model 

uncertainty reduces significantly across the wind speed range when the rotor 

speed is incorporated into the model as shown in Figure 8.5. This improvement 

in GP model uncertainty is significant for constructing robust GP fault detection 

algorithms and will be discussed in great details in upcoming sections. 

8.3 Comparative studies of the impact of wind turbine 

performance parameters on Gaussian Process models accuracy  

In this section, a performance comparison of GP models is presented in which 

uncertainty analysis and performance error metrics are used to judge the impact 

of additional performance parameters on GP model accuracy. Additionally, the 

impact of the inclusion of both additional performance parameters on the GP 

models is investigated. 

Figure 8.6 depicts the relationship of estimated CIs against wind speed for 

separate and combined inclusion of the additional parameters. The results show 

that the GP models with the inclusion of rotor speed make a significant 

improvement on model uncertainty as compared to the GP model with and 
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without the inclusion of blade pitch angle, see Figure 8.6. Furthermore, when GP 

with the inclusion of rotor speed model uncertainty is compared with the GP with 

inclusion blade pitch angle and rotor speed together, then the improvement in 

uncertainty is almost the same in both models. This confirms that incorporating 

rotor speed alone to GP models makes a compelling improvement which can be 

useful for constructing robust GP fault detection algorithms. 

Statistical error metrics were used here to confirm the impact of these 

performance variables on GP model accuracy. The statistical error metrics used 

to evaluate the performance of nonparametric models are MAE, RMSE, and 

coefficient of determination (𝑅2); described briefly in chapter 3. The calculated 

values of these error metrics are tabulated in Table 8.1. The calculated RMSE and 

MAE values reflect the amplitude errors and their small values indicate a strong 

relationship between measured and predicted values. In the GP model with rotor 

speed, RMSE and MAE values are smallest which suggests that a GP model 

incorporating rotor speed showed significant accuracy improvement. 

Furthermore, ithe nclusion of rotor speed gives 𝑅2=0.9969, which makes GP 

model relatively very close to 1 as compare to other performance parameters. 

Hence, highlighting the significant impact of rotor speed on GP model. It is worth 

noting that the GP model with inclusion of rotor speed and pitch angle have the 

highest accuracy but its value close to GP with rotor speed model, see Table 8.1. 

This trend well agrees on the results in Figure 8.6. 
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Figure 8.6: Comparative analysis of the impact of performance parameters on GP model 

uncertainty. 

GP Models  RMSE 𝑹𝟐 MAE 

without inclusion 38.04 0.9942 28.96 

with the inclusion of rotor speed. 27.89 0.9969 21.17 

with the inclusion of pitch angle 37.04 0.9945 28.22 

with the inclusion of pitch angle, and rotor 

speed 

27.03 0.9971 20.61 

   Table 8.1: Statistical measures for GP models when performance parameter included 

8.4 Gaussian Process fault detection algorithm with the inclusion 

of rotor speed 

Results from the previous section suggest that rotor speed makes a significant 

improvement to GP model accuracy and reduces uncertainty. This improvement 

can be useful in developing a robust GP based fault detection algorithm. To 

validate this, a fault detection GP algorithm is constructed and compared with 

that of Chapter 7. The performance comparison between these two algorithms is 
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undertaken concerning their capability to detect in advance (and by how much) 

signs of failure, and also their false positive rate. Besides impacting the power 

producing ability of a turbine, yaw error also affects the reliability of critical 

subsystems in wind turbines as was discussed in chapter 7. This motivates, as 

before, consideration of yaw misalignment as a case study to validate the impact 

of rotor speed on the GP fault detection algorithm. 

Table 8.2:  Description of the SCADA datasets 

SCADA data starting from 11/1/2008 14:30 PM until 30/03/2008 15:20 PM is 

used to train the GP power curve model as shown in Table 8.2. It should be noted 

that the SCADA data used are filtered, and air density corrected as per the 

methodology described in chapter 5. The reference GP power curve was 

constructed using GP theory with rotor speed incorporated in a squared 

exponential covariance function of GP model as per the procedure described in 

section 8.3; the result is shown in Figure 8.7. The obtained GP power curve is 

compared with a measured power curve and found that GP effectively represents 

the expected variance (i.e. the spread of the data in the power curve). It should be 

noted again that Figure 8.7 is the air density corrected power curve.  

The solid blue lines are the estimated CIs associated with the GP power curve 

model; it is clear that rotor speed inclusion results in CIs with significantly 

narrowed spread (as compared to the chapter 7 GP reference power curve). This 

results in an improvement in GP model accuracy by rejecting the data points 

effectively that lie outside of the CIs. The rejected data points can be considered 

anomalous, signifying a potential malfunction of the wind turbine. 

Dataset Start timestamp End timestamp Description 

1 11/1/2008 14:30 PM 30/03/2008 15:20 PM Total data filtered set: 

3274 observations 

2 14/4/2009 11:20 AM 16/4/2009 9:50 AM Total data set: 

201 observations 
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Figure 8.7: GP power curve with CIs when the rotor speed is incorporated 

SCADA dataset 2 of Table 8.2 represent an unhealthy dataset where significant 

yaw error occurred when the turbine failed to yaw for an extended period despite 

changes in wind direction, as illustrated in Figure 7.6 (of chapter 7). 

The incoming unhealthy data points of datasets 2 are judged on a point by point 

basis against the reference GP power curve (Figure 8.7), and probabilistic 

assessment was undertaken (as described in chapter 7). The GP model is fixed at 

the probability threshold of 0.006 to prevent GP algorithm from generating false 

alarms and therefore saving the additional operational cost caused by a false 

alarm. The threshold of 0.006 gives an accurate result without false positives, and 

thus it is used here. Using this, an alarm would have been raised at 21:50 on 

14/04/2009, just 50 minutes after the start of the yaw fault at 21:00 on 14/04/2009, 

without any false positives; this is illustrated in Figure 8.8.  

Note that chapter 7 GP fault detection algorithm detects the failure at 22:40 on 

14/4/2009, ~1.5 hours after the start of the yaw fault at 21:00 on 14/04/2009.  The 

GP model with the inclusion of rotor speed when compared with this algorithm 

was able to detect the first sign of anomaly 40 minutes earlier than the model 

without rotor speed as tabulated in Table 8.3. This confirms that the inclusion of 
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rotor speed improves the GP fault detection algorithm; in particular, its capability 

to detect failure quickly without any false alarm. 

 

              Figure 8.8: Impact of rotor speed on GP absolute yaw error detection algorithms 

 

         Table 8.3: Alarm record and detection by GP models when rotor speed incorporated 

It is worth to note that in chapter 7, GP fault detection algorithm used the Fisher 

Test in which 3 p-values with a threshold of 0.008 applied to filter the individual 

p-values. However, the inclusion of rotor speed narrows down the width of CIs 

(Figure 8.7), and due to this at a threshold value of 0.006, the obtained p-value is 

high. So, there no need to use ‘Fisher Test’ since its p-value is high unlike the p-

values obtained in chapter 7. 

GP Models Alarm detected Time is taken to identify the fault 

Probabilistic assessment using GP 22:40 on 14/4/2009 ~ 1.5 hours 

 

Probabilistic assessment using GP with 

the inclusion of rotor speed 

21:50 on 14/4/2009 50 minutes 
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8.5 Chapter conclusions  

The power curve accuracy is affected by various internal and external factors and 

taking these factors into account improves the model accuracy and its capabilities 

to detect the failures. In this chapter, the impact of additional wind turbine 

performance parameters (pitch angle and rotor speed) on GP power curve model 

accuracy and uncertainty was explored. The GP power curve was developed by 

incorporating these turbine performance parameters into the model. The inclusion 

of rotor speed improves the GP model accuracy and uncertainty which is further 

verified by performance error metrics (Table 8.1). Though the inclusion of blade 

pitch angle also improves the GP model accuracy somewhat, compared to rotor 

speed, it is not significant as presented in Figure 8.6 and Table 8.1.   

A fault detection algorithm based on the GP approach extended to include rotor 

speed was tested against the GP fault detection algorithm of chapter 7 in order to 

assess the impact of rotor speed on algorithm fault detection capabilities. Yaw 

misalignment which causes significant power loss was used here as a case study 

against which algorithm was tested and evaluated. Comparative Studies of these 

two methods concludes that inclusion of rotor speed improves the GP fault 

detection capabilities and able to detect the failures 40 minutes earlier than 

chapter 7 fault detection algorithm, see Figure 8.8 and Table 8.3. 
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Chapter 9  

 

Conclusions, discussion and future works 

 

The offshore wind industry is forecast to experience significant growth over the 

coming years and will continue to play a significant role in providing electricity 

to the UK households and industries. However, offshore turbines attract higher 

O&M costs than those onshore due to the logistics, transportation and high 

maintenance costs. Unscheduled maintenance due to unexpected failure can 

cause high O&M costs, and early detection of these failures that can help prevent 

catastrophic failures, improve turbine availability, reduces O&M cost, and 

improve the power performance of wind turbines.  

A Gaussian Process is a data-driven approach that has demonstrated effective 

application in many research areas. However, its application to wind turbine 

condition monitoring has to date been somewhat limited. This chapter 

summarises the main research contributions of this thesis in context to Gaussian 

Process model application to wind turbine condition monitoring and is followed 

by an outline of potential future work. 

9.1 Summary of thesis contributions and the overall conclusion 

The main contribution of this thesis has been to demonstrate the potential for 

SCADA data based Gaussian Process models for wind turbine condition 

monitoring. Of the total of 9 chapters, chapters 3 to 8 present specific scientific 

contributions to this field and these are summarised as follows.  

 Key points from Chapter 3 

The covariance (or kernel) function is the key to the GP model and is used to 

signify the similarity between two given points and measure the degree to which 

both points are related. Different forms of covariance function are available, and 
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hence the selection and composition of covariance functions is a non-trivial task 

in GP modelling.  This comparison is essential for robust GP fault detection 

algorithm development and needs to be done at the first stage so that based on 

this analysis; a suitable covariance function can be selected for future research. 

So, in this chapter in-depth analysis of popularly used stationary covariance 

functions are taken into GP power curve modelling and a comparative analysis 

undertaken. The commonly used squared exponential covariance function is 

taken as the benchmark, against which to assess the other covariance functions. 

The constructed GP models are validated using SCADA datasets from healthy 

operational wind turbines. 

The results show that fitted power curve GP model based on rational quadratic 

accuracy is almost same as the commonly used squared exponential covariance 

functions although prediction speed and time is taken by model training is 

extended, whereas GP models based on the squared exponential covariance 

function performance are superior. In short, both covariance functions worked 

pretty well in identifying a well fitted smooth function.  The rational quadratic 

covariance function can be used instead of squared exponential covariance 

functions for GP modelling if the data sets are not large and there is no limitation 

on training time and prediction speed. In contrast, the Matern 5/2 covariance 

function should be used with caution, and GP models based on the Matern 3/2 

function perform poorly and are not recommended for wind turbine power curve 

modelling. 

Based on the result from Chapter 3, the squared exponential is found to be the 

most suitable covariance function for power curve modelling and was used in all 

subsequent chapters. 

 Key points from Chapter 4  

In this chapter, three advanced nonparametric approaches, namely Gaussian 

Process (GP), Random Forest (RF), and Support Vector Machine (SVM) are 
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assessed for wind turbine power curve modelling. GP and SVM are kernel based 

methods while RF is based on a regression tree and is now starting finding 

application in wind turbine condition. The results obtained from these methods 

have been compared using suitable performance error metrics to identify the best 

method for modelling of the power curve and to list out the strengths and 

weaknesses of models. 

The computational results and the analysis (chapter 4) have demonstrated that the 

power curves based on GP models have the highest fitting accuracy, and can 

reflect the dynamic properties of a power curve, whereas the SVM approach gives 

a sufficiently accurate result but within a restricted wind speed range. Power 

curves based on GP and SVM provide a smooth and continuous fitting, whereas 

the power curve based on the RF is neither smooth nor continuous. The 

confidence intervals come with estimated mean values with GP models which 

makes uncertainty analysis straightforward while in case of RF and SVM, the 

additional mathematical computation required for confidence interval calculation 

increases the mathematical computational challenges and extra cost as compared 

to GP models. 

 Key points from Chapter 5 

The wind turbine power curve is mostly used to assess wind turbine performance, 

but it is not a perfect indicator because various failures and downtime events may 

go undetected if only this is used. Therefore, it is desirable to explore other curves 

that are based on critical parameters that affect the operation and power 

production of the wind turbine. Wind turbines operation is affected by external 

factors (e.g., wind turbulence, wind shear and icing ) and internal factors (e.g., 

rotor power, rotor speed and blade pitch angle). The external factors cannot be 

controlled, but the events related to internal factors can be analysed and 

potentially controlled to optimise the performance of wind turbines. The internal 

operations of turbines depends on critical variables, in particular, rotor power, 
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rotor speed and blade pitch angle, and continuous monitoring of these parameters 

improves the overall effectiveness of any model used to maximise the power 

production of turbines. 

In chapter 5, two GP operational curves, namely the rotor speed curve and blade 

pitch angle curve are developed alongside the power curve for delivering robust 

SCADA based condition monitoring. The constructed GP operational curves are 

compared with the conventional approach based on binned operational curves 

together with individual bin probability distributions to identify operational 

anomalies. Finally, a comparative analysis of these techniques is presented and 

explained how these GP operational curves could be used for effective 

condition/performance monitoring. 

 Key points from Chapter 6 

Power output is well known to be influenced by air density, and this is reflected 

in the IEC Standard air density correction procedure. Chapter 6 presented and 

assessed four different possible air density compensation approaches and the 

primary objective of this research is to explore whether the IEC (traditional 

approach) to air density correction is the most effective when estimating power 

curves using GP models. 

The result suggests that adding density to the GP without any pre-correction 

makes the GP model more effective and reduces uncertainty significantly as 

compared to other approaches, as validated here by distribution functions, 

confidence intervals, and statistical measures analysis. In short, not applying the 

Standard IEC density correction, but instead including air density in the GP model 

gives significantly more accurate power curves.  

 Key points from Chapter 7 

Chapter 7 demonstrates the application of a GP algorithm to wind turbine 

anomaly detection.  The specific fault investigated was a yaw control failure. In 

order to judge GP model effectiveness, two other methods based on binning have 
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been tested and compared with the GP based method. It was found that the GP 

model was able to detect the anomaly effectively with the alarm raised only 1.5 

hours after the fault occurred. Not only is the GP method developed ability to 

detect the yaw misalignment quickly, but it produces no false positives, in 

contrast to the bin based models, hence confirming that the GP approach provides 

both fast and robust fault identification. 

 Key points from Chapter 8  

The electrical power not only correlates with wind speed but also reflects various 

turbine parameters such as rotor speed and blade pitch angle. In this chapter, these 

parameters are incorporated into the GP model in order to analyse its impact on 

accuracy and uncertainty. The result demonstrated that inclusion of rotor speed 

makes a significant improvement in GP model accuracy and uncertainty. This 

improvement used to improve the GP fault detection algorithm of Chapter 7. The 

comparative studies of the two GP algorithm showed that the inclusion of rotor 

speed in the GP model increased its capabilities to detect the failure quickly, in 

fact, the extended model takes only 50 minutes to detect the first sign of failure. 

9.2 Future works  

This thesis provides an exciting opportunity to further advance the use of 

Gaussian Process models in context to wind turbine condition monitoring based 

on SCADA data. However, this thesis work can also be extended in many 

directions as outlined below.  

 Extending this research 

In this thesis, a GP fault detection algorithm was tested against a fault resulting 

in yaw misalignment. The constructed algorithm should also be tested with a 

range of failures that results in turbine underperformance.  

In most of this thesis work, the GP power curve was used to assess the 

underperformance of a wind turbine. However, it has been suggested 

demonstrated in chapter 5 that many downtime events and failures remain 
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undetected by the power curve. This should lead to an examination of other key 

indicators that could act as an add-on to the power curve for robust wind turbine 

condition monitoring. GP based reference blade pitch curve and rotor curves 

could be used along with power curve to assess the power performance of wind 

turbine effectively. In future work, the developed GP operational curves of 

chapter 5 could be applied to detect downtime events which remains undetected 

by the power curve.  Also, two generators for redundancy and how can GP model 

distinguish between the two different power curves are also included in future 

works. 

 Improving GP model accuracy and reducing uncertainty 

Chapter 8 demonstrated that additional wind turbine performance parameters 

improve the GP fault detection algorithm accuracy significantly. Likewise, other 

parameters should be investigated such as turbulence intensity, wind shear and so 

on, that are known to affect the power production of wind turbines. A comparative 

analysis of such parameters may improve GP model accuracy and reduce 

uncertainty and thus merit attention.  

 Performance comparison with existing statistical techniques 

This thesis gave a basic foundation of the GP model for SCADA data based wind 

turbine condition monitoring. The comparative studies of fault detection 

algorithms (binning) demonstrated that the capabilities of GP models to detect 

the failures at its early stage with any false positives. However, the constructed 

GP fault detection algorithm needs to compare with other available statistical 

models (e.g. SVM and RF), and this kept for future work. 

 




