
Pandit, Ravi Kumar and Infield, David (2018) SCADA based wind turbine 

anomaly detection using Gaussian Process (GP) models for wind turbine 

condition monitoring purposes. IET Renewable Power Generation. ISSN 

1752-1416 , http://dx.doi.org/10.1049/iet-rpg.2018.0156

This version is available at https://strathprints.strath.ac.uk/64291/

Strathprints is  designed  to  allow  users  to  access  the  research  output  of  the  University  of 

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights 

for the papers on this site are retained by the individual authors and/or other copyright owners. 

Please check the manuscript for details of any other licences that may have been applied. You 

may  not  engage  in  further  distribution  of  the  material  for  any  profitmaking  activities  or  any 

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the 

content of this paper for research or private study, educational, or not-for-profit purposes without 

prior permission or charge. 

Any correspondence concerning this service should be sent to the Strathprints administrator: 

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research 

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the 

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/158351408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
This paper is a post-print of a paper submitted to and accepted for publication in IET Renewable Power Generation 

and is subject to Institution of Engineering and Technology. The copy of record is available at IET Digital Library. 

1 

 

 

SCADA based wind turbine anomaly detection using Gaussian 
Process (GP) models for wind turbine condition monitoring 
purposes 
 

Ravi Kumar Pandit, David Infield 

 

Electronics and Electrical Engineering department, University of Strathclyde, 16 Richmond St,                              

Glasgow - G1 1XQ, Scotland, UK. 

Corresponding author Email: ravi.pandit@strath.ac.uk 

 

 

Abstract: The penetration of wind energy into power systems is steadily increasing; this highlights the importance of operations 

and maintenance, and also specifically the role of condition monitoring. Wind turbine power curves based on SCADA data provide 

a cost-effective approach to wind turbine health monitoring. 

This paper proposes a Gaussian Process (a non-parametric machine learning approach) based algorithm for condition monitoring. 

The standard IEC binned power curve together with individual bin probability distributions can be used to identify operational 

anomalies.  The IEC approach can also be modified to create a form of real-time power curve.  Both of these approaches will be 

compared with a Gaussian Process model to assess both speed and accuracy of anomaly detection. 

Significant yaw misalignment, reflecting a yaw control error or fault, results in a loss of power. Such a fault is quite common and 

early detection is important to prevent loss of power generation. Yaw control error provides a useful case study to demonstrate 

the effectiveness of the proposed algorithms and allows the advantages and limitations of the proposed methods to be determined. 

_____________________________________________________________________________________ 

1. Introduction 

           The primary role of wind turbine power curves is to 

provide a benchmark for performance for use in purchase 

contracts. The measurements and data analysis procedures 

have been developed over decades and are represented in an 

International Standard, IEC [1]. There remain issues of 

accuracy and it is recognised that changes in external factors 

such as atmospheric stability, and associated with this wind 

shear and turbulence, can influence the power curves in ways 

that are not fully understood [1,2,3].  Even air density 

correction as prescribed in the Standard is imperfect. For 

example, the authors of [4] used two different windfarm 

SCADA datasets for constructing power curves using a 

Gaussian Process and for one of these datasets it was found 

that model accuracy was marginally improved by avoiding 

the standard air density pre-correction. Research is needed to 

further investigate these issues. 

In recent years, the potential use of power curves for 

wind turbine condition monitoring has been recognised [5,6]. 

Significant changes in the power curve can be an indication 

of developing faults and since SCADA data for operational 

wind turbines is readily available, techniques for the 

identification of small changes to the power curve are being 

researched.  As part of this, some researchers have applied 

new methods to fitting power curves to the data.  In most 

cases the data itself is collected in the same way: 10 minute 

averaged pairs of net wind turbine power, and hub height 

horizontal wind speed at a suitable distance in front of the 

rotor (between 2 and 4 rotor diameters in the Standard), or 

alternatively taken from the nacelle anemometer. 

As mentioned above, power curves are conventionally 

calculated using the method prescribed by the IEC Standard.  

This involves binning the data into 0.5 m/s wide wind speed 

intervals, and then calculating the average power and wind 

speed for each bin.  The power curve is a smooth curve drawn  

 

through these points, but in actuality is only defined exactly 

at the points themselves.  The bin width of 0.5 m/s is a 

compromise between accuracy, since within each bin the 

measured power will depend strongly and non-linearly on 

wind speed and a wide bin would result in a systematic bias, 

and the need in practice to get sufficient data points in each 

bin to be of statistical significance.  Many papers have been 

published that seek an alternative approach to fitting power 

curves to the data.  These fall broadly into two categories: 

parametric methods such a polynomial curve fitting; and non-

parametric methods, often using machine learning techniques 

[7].  These will be briefly reviewed below. 

Parametric curve fits to power curves are 

approximations, with higher order fits generally providing 

more accurate fitting.  Different polynomial curves and an 

exponential fit are compared in [8].  In [9], improvements on 

standard least squares polynomial regression using locally 

weighted polynomial regression and spline regression are 

demonstrated. It is not immediately clear why these 

approaches would be considered more attractive than 

conventional power curves, suitably interpolated. 

Kernel methods are non-parametric and a supervised 

learning form of pattern recognition related to Gaussian 

Processes, they have been applied to wind turbine power 

curves.  In [10] data from two turbines were analysed and the 

identification of blade icing was demonstrated.  The same 

authors have also explored an approach based on eigenvalue 

analysis, [11].  A kernel plus method has also been applied, 

[12], to overcome identified shortcomings of multivariate 

kernel regression.  Air density, turbulence intensity and wind 

shear are the additional variables considered.  Similar data has 

been analysed by the same team using the more conventional 

additive multivariate kernel method, [13]. 

A somewhat inelegant linear hinge model in which the 

power curve is broken up into k segments each fitted using  
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linear regression has been applied, [14].  Clustering 

approaches have also been used to group data and thus 

determine a power curve.  One example is [15] where a 

simple cluster centre algorithm is compared with fuzzy C-

means and subtractive clustering; 8 clusters were found to 

provide an adequate model. A k nearest neighbour (k-NN) 

clustering approach was shown to be superior to a range of 

other methods including fitting the logistic function through 

maximum likelihood values, neural nets, random forest and 

boosting tree.  However, the number of clusters used was 150 

which is more than the number of bins used in a conventional 

power curve, so the advantage is unclear. 

Many of the published methods concentrate solely on 

the power curve, but clearly there is valuable information in 

the spread of data, for example the probability distribution of 

power points in a given wind speed bin of a conventional 

power curve.  Both Gaussian Process theory and Copula 

models intrinsically provide confidence bounds for the fitted 

power curve and these are dealt with in more detail below. 

Copula models provide an effective means of 

representing a non-linear relationship between two variables; 

they can thus be applied to wind turbine power curves.  An 

early paper, [16], outlines how Copulas can be fitted to wind 

turbine power curve data.  In [17], Copula fitting has been 

used to exclude outliers when calculating power curves. 

Gaussian Processes are very general non-linear 

models.  They have recently started to find application to 

wind turbine power curves, for example [18].  In Gaussian 

Process models, training is undertaken to select the best hyper 

parameters which define the covariance function.  The form 

of the covariance function is commonly assumed to be a 

square exponential function. In [19], Gaussian Processes are 

used to model power curves and also to include air density 

changes.  This was found to be preferable to correcting the 

power-wind speed data to reflect air density as described in 

the IEC Standard.  

This paper proposes a range of algorithms for 

condition monitoring based on a probabilistic GP and binning 

methods. A comparative assessment of promising approaches 

has been undertaken in terms of their capability to detect in 

advance (and by how much) signs of failure.   

2. Yaw error case study  

All The direction of wind is not constant, it always 

changes. A wind turbine generates most effectively when the 

rotor is facing directly into the free oncoming wind; changes 

in wind direction are tracked by the yaw drive and control 

system. A wind vane, located on the nacelle behind the rotor 

blades (figure 1), is used to control the alignment of the wind 

turbine. Nevertheless, an erroneous yaw error signal can 

result from turbulence generated with the passage of the 

blades in spite of sophisticated corrective software, and this 

will result in a degree of so called yaw error where the turbine 

rotor is not properly aligned. The yaw error is measured by 

the wind vane mounted on the rear of the nacelle.  

In addition to the challenge of measuring wind 

direction on the nacelle any misalignment of wind vane itself 

will contribute to yaw error.  Moreover, large wind turbine 

rotors must be yawed slowly to limit gyroscopic loads and 

thus cannot follow rapid changes in wind direction.  All this  

 

means that a level of yaw error in inevitable.  This average 

yaw misalignment will result is some reduction to the annual 

energy production (AEP). As reported in [21] an average of ͸Ǥʹι of misalignment causes an estimated 2 %  reduction in 

AEP with roughly a loss of 2 to 3% for ͻιtoͳͲι of average 

yaw error. As well as the operational yaw error outlined 

above, faults can develop with the yaw control system.  Early 

detection of such yaw control faults is important to avoid loss 

of power production and associated revenue [22], but also to 

minimise fatigue damage and reduce maintenance costs, [23], 

increase life of turbine, [24], and reduce the levelised Cost of 

Electricity (LCOE) and improve the return on investment 

(ROI), [25].   

 

 
Figure 1: Schematic of wind turbine system, [20] 

 

The dependence of wind turbine power production on 

yaw error is reasonably explained by cosine cubed theory, 

[26], which states that power output is scaled by the cube of 

cosine of yaw error (differences between wind direction and 

the nacelle direction).  Although not perfect,  this law 

estimates that a large yaw error of ʹͲι  will lead to a 

significant power deficit of 17 % Such power deficit is 

unlikely to acceptable to a wind farm operator.  Because of 

the strong link between yaw error and power production, such 

faults can provide excellent test cases with which to test 

power curve anomaly detection algorithms.  

3. Data description and pre-processing 

There is considerable pressure to reduce the cost of 

wind energy, especially from offshore installations. 

Condition monitoring has the potential to assist in this, but 

many condition monitoring systems are expensive and 

require an experienced engineer to interpret the data. 

Condition monitoring using Supervisory Control and Data 

Acquisition (SCADA) data is a cost effective approach since 

such data is available at no cost.  SCADA data provides 

crucial knowledge regarding load history and operations of 

individual wind turbines and provides an efficient and cost-

effective way to monitor wind turbines for early warning of 

failures and related performance issues.  

The SCADA data sets used in this study are from 

operational wind turbines located in Scotland, UK, and 

contain more than 100 different signals, ranging from 

timestamp, calculated values, set point, measurements of 
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temperature, current, voltage, wind speed, power output, 

wind direction etc.  

 

Due to sensor failure and data collection faults SCADA data 

is not itself without errors. Such errors will affect power 

curves and should be systematically removed at the outset. 

Criteria like timestamp mismatches, out of range values, 

negative power values, and turbine power curtailment are 

considered to be misleading and have been filtered out 

following methodologies used in [27] and summarized in 

table 1. All the SCADA data considered here consists of 10 

minute averages with maximum, minimum, and standard 

deviation over the 10 minutes also being recorded; the 

available data set corresponds to a full year of operation.  The 

data used in this paper is for 2.3 MW Siemens turbines. Table 

1 summarises two datasets: data set 1 beginning with time 

stamp ‘‘11/1/2008 14:30 PM’’ and ending at time stamp 
‘‘30/03/2008 15:20 PM’’; and data set 2 beginning with time 

stamp ‘‘14/4/2009 11:20 AM’’ and ending at time stamp 
‘‘16/4/2009 9:50 PM’’. Data set 1 contains 4725 measured 

value which became 3274 data points after pre-processing 

and was used to develop a power curve models based on 

binning and a Gaussian Process (GP), as described in 

upcoming sections. Data set 2 includes 201 data points and 

was used to test the performance of the model learned from 

data set 1.  

 

   Table 1: Description of the data sets          

                           

4. Construction of reference power curve and 
importance of air density correction 

The nonlinear relationship between hub wind speed 

and turbine output power is represented by the power curve; 

mathematically it is described by the following equation, 

 ܲ ൌ ͲǤͷ ܥܣߩ௣ሺߣǡ  ଷ                        (1)ݒ ሻ ߚ

 

         where, ȡ is Air density ሺ݇݃ ݉ଷΤ ሻ, A is swept area (݉ଶ) , ܥ௣ is the power coefficient of wind turbine and ݒ is the hub 

wind speed ሺ݉ Τܿ݁ݏ ሻ. 

The power coefficient is a function of tip speed ratio ሺߣሻ and pitch angle ሺȾሻ. In addition to these two parameters, 

the power capture from a wind turbine depends on other 

factors such as wind direction, wind shear, turbulence 

intensity and air density [28]. Due to the complex manner in 

which these parameters impact on turbine efficiency, 

equation (1) must be regarded as a simplification with limited 

accuracy. 

A key application of the power curve is in the 

estimation of annual energy production (AEP), calculated 

from the wind speed frequency distribution and the 

corresponding power values given by the power curve. Wind 

resource assessment of a site or region is undertaken using the 

long term probability distribution of hub wind speed together 

with the power curve, [29]. The Capacity factor (CF), defined 

as the ratio of actual energy production to production if the 

turbine operated always at rated power, is used to assess how 

effective a turbine is at a given location. CF can be used to 

determine optimum turbine-site matching and rank potential 

sites [30,31]. In [32], four different power curve models were 

applied in the estimation of capacity factor. Accurate 

modelling of a wind turbine power curve can assist in the 

analysis of turbine performance and efficiency and thus in 

anomaly detection [33,34].  

Air density changes with passing weather systems, 

altitude and significantly with ambient temperature. Hence in 

order to analyse the performance of modern variable speed 

turbines, an air density correction should be applied as per 

IEC standard 61400-12-1, [1,35] and is given as follows, 

ߩ  ൌ ͳǤʹʹͷ ቂଶ଼଼Ǥଵହ் ቃ ቂ ஻ଵ଴ଵଷǤଷቃ                (2) 

 

and,                 ஼ܸ ൌ  ெܸ ቂ ఘଵǤଶଶହ ቃభయ
                            (3) 

 

where, ஼ܸ  and ெܸ  are the corrected and measured 

wind speed in m/sec and the corrected air density is calculated 

by equation (2) where B is atmospheric pressure in mbar and 

T the temperature in Kelvin. It should be noted T and B values 

are 10 – minute average values extracted from SCADA data. 

The corrected wind speed ( ஼ܸ ) from equation (3) is then used 

to calculate the power curve. 

10-minute SCADA data from a healthy turbine are 

utilized for reference power curve construction. The power 

curve data shown in figure 2 is after the correction for air 

density and after removing misleading data as described in 

section 3. These air density corrections also applied to the 

unhealthy turbine data so that it can be evaluated against the 

reference power curve in a consistent manner.  

 

 
Figure 2: Pre-processed power curve and affiliations  

Data 

set 

Start time 

stamp 

End time 

stamp 

Description 

1 11/1/2008 

14:30 PM 

30/03/2008 

15:20 PM 

Total data 

filtered set: 

3274 

observations 

2 14/4/2009 

11:20 AM 

16/4/2009 

9:50 AM 

Total data set: 

201 observations 
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5. Basics of Gaussian Process (GP)  

An A Gaussian Process (GP) is a Bayesian, non-

parametric, non-linear regression machine learning approach 

widely used to deal with probabilistic regression problems, 

for example, [36,37]. Because of its flexibility, its basis in 

probability theory and ease of modelling (it requires very few 

assumptions) it is an ideal approach for many prediction and 

fitting related issues. A GP is in essence the non-parametric 

generalization of a joint normal distribution for a given 

potentially infinite set of variables and it is mathematically 

defined by its mean and covariance functions (or kernel) as 

given in equation (4), 

 

                 Y ̱  GPሺ Ɋǡ σሻ                       (4) 

             

           where, Ɋ is the mean function, and ∑ is the covariance 
function that has an associated probability density function: 

 ܲሺݔǢ ǡߤ σሻ ൌ  ଵሺଶగሻ೙మ ȁσȁభమ ݌ݔ݁  ቄെ ଵଶ ሺݔ െ ݔሻ் σିଵሺߤ െ                                                                        ሻቅߤ

(5) 

where ȁσȁ   is   defined as determinant of σ , ݊ is the 

dimension of random input vector ݔ , and µ is mean vector of 

vector ݔ . The term under the exponential, i.e.  
ଵଶ ሺݔ െߤሻ் σିଵሺݔ െ    .ሻ  is an example of a quadratic formߤ

The 1-dimensional Gaussian Process model is a 

special case where ݔ is a scalar. The covariance matrix, K, 

gives the variance of each variable along the leading diagonal, 

and the off-diagonal elements measure the correlations 

between the different variables, and are given by: 

 

ܭ            ൌ  ൥݇ଵଵ ڮ ݇ଵ௡ڭ ڰ ௡ଵ݇ڭ ڮ ݇௡ ൩    where ݇௜௝ ൌ ݇൫ݔ௜ ǡ is of size ݊ ൈ ܭ ௝൯ݔ  ݊, where ݊ is the number of input 

parameters considered, and it must be symmetric and positive 

semidefinite i.e. σ௜௝ ൌ σ௝௜ Ǥ  
A covariance function describes the dependency of 

two variables with respect to each other and is the heart of 

any GP model; it signifies the similarity between two points 

and hence determines closeness between two points. GP 

model behaviour is completely defined by its co-variance 

functions which makes selection of suitable covariance 

function in a GP model necessary for prediction model 

accuracy.  

There are various available covariance functions 

described in [37] and selection is based on nature of the data. 

The squared exponential covariance function is commonly 

applied and will be used in this paper. For any finite collection 

of inputs ሼݔͳǡ ǡʹݔ ǥ Ǥ Ǥ ǡ  :ሽ , it is defined as݊ݔ

 ݇ௌா ሺݔǡ ᇱሻݔ ൌ ݌ݔ௙ଶ݁ߪ   ൬െ ൫௫ି௫ᇲ൯మଶ௟మ  ൰                   (6) 

 

SCADA data from the wind turbine comes with 

measurement errors so it is desirable to add a noise term to  

 

the covariance function in order to improve the accuracy of 

the GP model. Hence equation (6) modified to be: ݇ௌா ሺݔǡ ᇱሻݔ ൌ ௙ଶexpߪ   ൬െ ൫௫ି௫ᇲ൯మଶ௟మ  ൰ ൅   ߪ௡ଶߜሺݔǡ                   Ԣሻݔ

(7) 

where ߪ௙ଶ and ݈ are known as the hyper-parameters. ߪ௙ଶ  Signifies the signal variance and ݈  is a characteristic 

length scale which describes how quickly the covariance 

decreases with distance between points. ɐ௡  is the standard 

deviation of the noise fluctuation and gives information about 

model uncertainty. ߜ is the Kronecker delta, [37].  

Using this GP model, a power curve is estimated from 

the data and is shown in figure 3. As can be seen clearly from 

figures 4 and 5, this GP model is able to fit the power curve 

smoothly and accurately.  

 

 
Figure 3: GP fitted power curve 

 
Figure 4: GP power curve comparison 
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Figure 5: GP estimates of power generation time series 

 

 
Figure 6: Plot of residuals and its histogram fitting 

 

Investigation of residuals of a GP model is important. 

The frequency distribution of the residuals is shown in figure 

6 together with a fitted Gaussian distribution. This 

distribution validation is useful for developing the 

probabilistic based GP model in section 6.1.3. 

6. Methodologies to be compared 

 Wind turbine performance analysis is presently an 

active area of research. This paper is focused on performance 

as represented by fitted power curves.  

 

6.1. Power curve comparison 
 

Power curves can play a vital role in identifying 

anomalous operation reflecting insipient fault development. 

Information related to statistically significant power curve 

deviations is thus important. Such deviations could be due to: 

anemometer error, power transducer calibration error or 

controller setting error. A consistent significant deviation 

from the reference power curve may be due to blade damage; 

yaw drive issues or possibly very large wind shear or wind 

veer for below rated operation, [38]).  The IEC recommended 

approach uses binning; hence in order to evaluate the 

effectiveness of the GP model, two binning methods are 

described and a comparative analysis carried out. 

In this paper, based on a reference power curve 

constructed using either binning or a GP model, as outlined 

above, an anomaly detection algorithm has been constructed 

to identify any statistically significant deviation from the 

reference power curve on bin by bin basis for the binned 

reference power curve, and for the GP model using the 

inherent confidence intervals. 

 

6.1.1 Fisher's combined probability test 
 

Statistical tools often need to combine the evidence 

obtained from assumed independent sources. In order to do 

so, a combine p-values concept is developed. The Fisher 

product test, [39], is a statistical test that combines p-values, 

based on notion that several non-significant results occurring 

together may suggest significance and hence detect departure 

from the null hypothesis , ܪ௢ . The equation used for 

calculating the Fisher combined probability test is given as, 

 

                  ܺଶ௞ଶ  ̱ െ ʹ σ ݈݊ ௜௞௜ୀଵ݌                (8) 

 

where p୧  is the probability that the ݅௧௛  variable 

exceeds the measured value under the null hypothesis . Under 

the null hypothesis Xଶ୩ଶ  is the distributed as a chi-squared 

variate with ʹ݇ degrees of freedom. Here, ݇ is the number of 

independent tests being performed. 

Apart from Fisher method, other methods for 

combining p-values are briefly discussed in [40, 41,42]. The 

applications for combining the p-values are numerous, 

including combining the results from independent studies and 

combining the results of individual component problems as 

part of an overall test, [43, 44]. This approach will be used to 

construct effective probabilistic based binning and for the GP 

algorithm, as is described in the following sections. 

For consistency, all the time series used in this work 

covers the same time period of 33 hours.  On the graphs these 

are shown on a scale of zero to 200 (10-minute periods); in 

reality the time series runs from 11:20 on 14-04-2009. 

 

6.1.2 Probabilistic assessment of incoming data 
using a binned power curve 

 

             This algorithm uses a probabilistic approach to 

identify anomalies associated with incoming power-wind 

speed data, point by point. A reference binned power curve 

has been constructed following the IEC recommendations 

using the pre-processed power curve (of figure 2) where it is 

binned by the normal 0.5 m/sec wide wind speed intervals. 

Figure 7 shows the reference binned power curve together 

with error bars. The two standard deviation (i.e. 95% 

confidence intervals) of measured power values are used to 

calculate the error bars which are used to measure the 

uncertainty associated with each bin of the power curve. It is 

worth noting that there is slight deviation in power curve 

which is due to varying environmental conditions.  
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   Figure 7: Binned power curve with error bars 

 

Once the reference power curve has been constructed, 

the next step is to assess potentially unhealthy incoming data 

point by point against the relevant bin and its uncertainly by 

probabilistic assessment. In the probabilistic binning method, 

Fisher's combined probability test (describe in 6.1.1) is used 

to multiply two sequential p values. After testing and 

validation various different numbers of p-values it was found 

that the 2 p-values gives the most effective performance, and 

hence will be used here. Two sequential values have been 

used here, but this could be extended if required to give 

greater confidence that the data points are anomalous.  A 

threshold of 0.005 (or significance level) is set in order to 

determine the aggregate number of anomalous bin values. A 

graph of yaw error together with alarm detection based on the 

probabilistic approach is plotted in figure 8. From the graph, 

anomalous performance due to yaw misalignment or a yaw 

drive control issue identified. This is further confirmed by 

figure 9, where it can be seen that the nacelle is stuck in a 

fixed position for an extended period of time. 

Using this method, the first alarm recorded at 00:50 

15-04-2009, approximately 4 hours after the yaw fault was 

first identified (in figure 8) at 21: 00 14-04-2009. It should be 

noted that this time series also indicates a limited number of 

false alarms.  Overall though, the proposed approach, based 

on the probabilistic binned power curve approach, allows 

identification of this significant performance issue, and does 

this relatively quickly.  

 
Figure 8: Yaw error detection using probabilistic assessment 

of binned power curve. 

 
Figure 9: Time series of wind direction and nacelle position 

  

6.1.3  Probabilistic assessment of incoming data 
using a real time power curve 

 

Wang and Infield, [47], proposed an approach to 

anomaly detection by comparing a so called real-time power 

curve with a reference power curve using Welch’s hypothesis 
test with a confidence interval of 99.5% i.e. a significance 

level of 0.005. Selection of this provisional figure was on 

intuitive basis where the calculated likelihood is not 

unreasonable. A significance level of 0.005 was used to 

determine the aggregate number of anomalous bin values at 

each time point for an entire power curve.  These are plotted 

as a time series as shown in figure 10 and record the 

anomalous performance due to the yaw drive or yaw drive 

control fault.  

Using this algorithm, an alarm would have been raised 

at 03:00 on 15/04/2009, 6 hours after the fault occurs (at 

21:00 on 14/04/2009).  

 
Figure 10: Absolute yaw error detection using online power 

curve model 

 

6.1.4  Probabilistic assessment of incoming data 
using a Gaussian Process to represent the 
power curve 
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A GP power curve model intrinsically represents 

fitting errors and thus model accuracy as describe in section 

5. An assessment of a GP power curve can be done using 

confidence intervals (CI). These GP confidence intervals 

provide information on the uncertainty surrounding an 

estimation, but are themselves model based estimates, [45]. 

Data points that lie outside of the confidence intervals can be 

considered anomalous, signifying a potential malfunction of 

the wind turbine. In order to make an accurate uncertainty 

estimate, it is desirable to modify the confidence intervals, as 

describe in our previous work . Modified confidence intervals 

together with a fitted GP power curve is shown in figure 11. 

It is worth noting that figure 11 is a fitted GP power curve 

with CI obtained from a healthy operational turbine using the 

model describe in section 5; this will be used as the reference 

GP power curve.  

A confidence interval (CI) of 95 % reflects a 

significance level of 0.05 and was used in the GP model to 

determine the sequential anomalous data point values at each 

time for an entire reference GP power curve. The incoming 

data points are assessed on a point by point basis against the 

reference GP power curve and probabilistic assessment 

undertaken. The Fisher test as describe in section 6.1.1 was 

used to combine 3 p-values with a threshold of 0.008 applied 

to filter the individual p-values.  False alarms cause additional 

operational costs and so it is desirable to construct an 

effective GP model that generates no false alarms. To achieve 

this, the GP is model adjusted by changing the probability 

threshold until no false alarms occur; a threshold of 0.008 

gives accurate results with no false positives, and hence is 

used here.  

Figure 12 shows the effectiveness of the GP algorithm 

where the aggregate number of anomalous values at each time 

point are plotted as a time series together with absolute yaw 

error.  

 
Figure 11: Reference power curve fitting with confidence 

intervals using GP 

 
Figure 12: Absolute yaw error detection using GP model 

 

Using the GP algorithm, an alarm would have been 

raised at 22:30 on 14/04/2009, just 1.5 hrs after the start of 

the yaw fault at 21:00 on 14/04/2009, as shown in figure 12. 

Moreover, as described above, there are no false positives, 

confirming that the GP approach provides both fast and 

robust fault identification. 

7. Comparison of performance of the different 
methodologies 

The performance of the three different approaches 

to detection of a power performance anomaly associated 

with a yaw control fault have been assessed in section 6 

above.  In this section the performance of three different 

techniques are compared, mainly in terms of speed of 

detection.  Speed of detection is important since 

continued operation, in this case with large yaw angle 

errors, will lead to enhanced damage rates.  The response 

of the three models are brought together in figure 13. As 

can be identified from the nacelle position time series 

(figure 9), the yawing fault started at 21:00 on 

14/04/2009 and hence this will be used as the benchmark 

to judge the capability each of the models’ capability to 
rapidly detect the fault. By doing comparative analysis, 

it has been found that GP approach is able to detect yaw 

error earlier, just 1.5 hours after the fault occurs, while 

probabilistic binning approach took around Ͷ hours,  and 

the real-time power curve algorithm took 6 hours to 

identify the fault, as shown in figure 13 and in table 2. 

Not only is the GP method able to detect the yaw 

misalignment quickly, but it produces no false positives, 

in contrast to the probabilistic power curve. 
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Figure 13: Comparative analysis of different models for 

absolute yaw error detection 

 

Table 2: Alarm record and detection by each approach 

8. Conclusions and discussions 

Gaussian Process (GP) models have been shown to 

provide an effective approach to condition monitoring. 

Models based on GP and binning have been analyzed to 

assess their effectiveness in terms of capability to detect in 

advance (and by how much) anomalous performance related 

to yaw misalignment. Accurate modeling of the reference 

power curve is vital in the development of algorithms to 

detect such anomalies. It has been found that the proposed GP 

model is able to detect anomalies at 22:30 on 14/04/2009, just 

1.5 hrs. after the fault, considerably more quickly than the two 

other methods investigated.  Moreover, so this example, the 

GP approach produced no false positives. 

While dealing with GPs it is important to note the data 

management challenge. Due to the inverse cubic problem, 

[48], it is not desirable to include large number of SCADA 

data points in the models, either for training or for fitting. 

Some methods based on state-space algorithms, [49,50], can 

help with this inverse cubic problem but these still requires 

high processing power and computational cost in dealing with 

large SCADA datasets of the sort encountered in wind turbine 

power curve fitting. Hence striking the balance between these 

two is vital for GP model accuracy. 

Future work will test the approach developed here 

against a wide range of different turbine faults. 
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