482 research outputs found

    Pre-main-sequence population in NGC 1893 region

    Full text link
    In this paper we continued our efforts to understand the star formation scenario in and around the young cluster NGC 1893. We used a sample of the young stellar sources (YSOs) identified on the basis of multiwavelength data (optical, near-infrared (NIR), mid-infrared (MIR) and X-ray) to study the nature of YSOs associated with the region. The identified YSOs show an age spread of ~ 5 Myr. The YSOs located near the nebulae at the periphery of the cluster are relatively younger in comparison to those located within the cluster region. The present results are in accordance with those obtained by us in previous studies. Other main results from the present study are: 1) the fraction of disk bearing stars increases towards the periphery of the cluster; 2) there is an evidence supporting the notion that the mechanisms for disk dispersal operate less efficiently for low-mass stars; 3) the sample of Class II sources is found to be relatively older in comparison to that of Class III sources. A comparison of various properties of YSOs in the NGC 1893 region with those in the Tr 37/ IC 1396 region is also discussed.Comment: Accepted for publication in New Astronom

    Sleep onset problems and subcortical development in infants later diagnosed with autism spectrum disorder

    Get PDF
    Objective: Sleep patterns in children with autism spectrum disorder (ASD) appear to diverge from typical development in the second or third year of life. Little is known, however, about the occurrence of sleep problems in infants who later develop ASD and possible effects on early brain development. In a longitudinal neuroimaging study of infants at familial high or low risk for ASD, parent-reported sleep onset problems were examined in relation to subcortical brain volumes in the first 2 years of life. Methods: A total of 432 infants were included across three study groups: infants at high risk who developed ASD (N=71), infants at high risk who did not develop ASD (N=234), and infants at low risk (N=127). Sleep onset problem scores (derived from an infant temperament measure) were evaluated in relation to longitudinal high-resolution T1 and T2 structural imaging data acquired at 6, 12, and 24 months of age. Results: Sleep onset problems were more common at 6–12 months among infants who later developed ASD. Infant sleep onset problems were related to hippocampal volume trajectories from 6 to 24 months only for infants at high risk who developed ASD. Brain-sleep relationships were specific to the hippocampus; no significant relationships were found with volume trajectories of other subcortical structures examined (the amygdala, caudate, globus pallidus, putamen, and thalamus). Conclusions: These findings provide initial evidence that sleep onset problems in the first year of life precede ASD diagnosis and are associated with altered neurodevelopmental trajectories in infants at high familial risk who go on to develop ASD. If replicated, these findings could provide new insights into a potential role of sleep difficulties in the development of ASD

    Subcortical Brain and Behavior Phenotypes Differentiate Infants With Autism Versus Language Delay

    Get PDF
    Background Younger siblings of children with autism spectrum disorder (ASD) are themselves at increased risk for ASD and other developmental concerns. It is unclear if infants who display developmental concerns, but are unaffected by ASD, share similar or dissimilar behavioral and brain phenotypes to infants with ASD. Most individuals with ASD exhibit heterogeneous difficulties with language, and their receptive-expressive language profiles are often atypical. Yet, little is known about the neurobiology that contributes to these language difficulties. Methods In this study, we used behavioral assessments and structural magnetic resonance imaging to investigate early brain structures and associations with later language skills. High-risk infants who were later diagnosed with ASD (n = 86) were compared with high-risk infants who showed signs of early language delay (n = 41) as well as with high- and low-risk infants who did not have ASD or language delay (n = 255 and 143, respectively). Results Results indicated that diminished language skills were evident at 12 months in infants with ASD and infants with early language delay. At 24 months of age, only the infants with ASD displayed atypical receptive-expressive language profiles. Associations between 12-month subcortical volumes and 24-month language skills were moderated by group status, indicating disordinal brain-behavior associations among infants with ASD and infants with language delay. Conclusions These results suggest that there are different brain mechanisms influencing language development in infants with ASD and infants with language delay, and that the two groups likely experience unique sets of genetic and environmental risk factors

    Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet

    Get PDF
    SEVERAL models have been proposed for the geodynamical evolution of the Tibet-Himalayas collision zone1-6. It is now generally recognized that the high elevations of the region have been caused by mechanical thickening of the crust and flow in the mantle, but there is debate as to whether the thickening has occurred by the underthrusting of Indian crust under Tibet, or by distributed shortening and thickening of the Tibetan crust as India has pushed northwards into it. Here we address this question using seismic measurements of heterogeneity and anisotropy at depth, obtained with a temporary teleseismic array spanning 500km from the Lesser Himalayas to central Tibet (Fig. 1). We observe a significant change in seismic anisotropy across the Indus-Tsangpo suture (ITS), suggesting a change in mode or direction of deformation at depth. In the Himalayas, our results are consistent with the stacking of Indian and Tibetan lithospheres, whereas north of the ITS the data indicate ductile flow in the mantle and show no sign of the Indian lithosphere. © 1995 Nature Publishing Group.Peer Reviewe

    Walking, Gross Motor Development, and Brain Functional Connectivity in Infants and Toddlers

    Get PDF
    Infant gross motor development is vital to adaptive function and predictive of both cognitive outcomes and neurodevelopmental disorders. However, little is known about neural systems underlying the emergence of walking and general gross motor abilities. Using resting state fcMRI, we identified functional brain networks associated with walking and gross motor scores in a mixed cross-sectional and longitudinal cohort of infants at high and low risk for autism spectrum disorder, who represent a dimensionally distributed range of motor function. At age 12 months, functional connectivity of motor and default mode networks was correlated with walking, whereas dorsal attention and posterior cingulo-opercular networks were implicated at age 24 months. Analyses of general gross motor function also revealed involvement of motor and default mode networks at 12 and 24 months, with dorsal attention, cingulo-opercular, frontoparietal, and subcortical networks additionally implicated at 24 months. These findings suggest that changes in network-level brain-behavior relationships underlie the emergence and consolidation of walking and gross motor abilities in the toddler period. This initial description of network substrates of early gross motor development may inform hypotheses regarding neural systems contributing to typical and atypical motor outcomes, as well as neurodevelopmental disorders associated with motor dysfunction

    Lysine acetylation regulates the interaction between proteins and membranes

    Get PDF
    Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes

    Azimuthal anisotropy at RHIC: the first and fourth harmonics

    Get PDF
    We report the first observations of the first harmonic (directed flow, v_1), and the fourth harmonic (v_4), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v_2) generated at RHIC. From the correlation of v_2 with v_1 it is determined that v_2 is positive, or {\it in-plane}. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 6 pages with 3 figures, as accepted for Phys. Rev. Letters The data tables are at http://www.star.bnl.gov/central/publications/pubDetail.php?id=3

    Cluster Density and the IMF

    Full text link
    Observed variations in the IMF are reviewed with an emphasis on environmental density. The remote field IMF studied in the LMC by several authors is clearly steeper than most cluster IMFs, which have slopes close to the Salpeter value. Local field regions of star formation, like Taurus, may have relatively steep IMFs too. Very dense and massive clusters, like super star clusters, could have flatter IMFs, or inner-truncated IMFs. We propose that these variations are the result of three distinct processes during star formation that affect the mass function in different ways depending on mass range. At solar to intermediate stellar masses, gas processes involving thermal pressure and supersonic turbulence determine the basic scale for stellar mass, starting with the observed pre-stellar condensations, and they define the mass function from several tenths to several solar masses. Brown dwarfs require extraordinarily high pressures for fragmentation from the gas, and presumably form inside the pre-stellar condensations during mutual collisions, secondary fragmentations, or in disks. High mass stars form in excess of the numbers expected from pure turbulent fragmentation as pre-stellar condensations coalesce and accrete with an enhanced gravitational cross section. Variations in the interaction rate, interaction strength, and accretion rate among the primary fragments formed by turbulence lead to variations in the relative proportions of brown dwarfs, solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy, May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla, and H. Zinnecke
    corecore