430 research outputs found

    Strain controlled biaxial stretch: An experimental characterization of natural rubber

    Get PDF
    In this paper we provide new experimental data showing the response of 40A natural rubber in uniaxial, pure shear and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the pre-selected deformation rate within the gage area of the specimen. The remaining part of the paper focuses on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data. We use a three term Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction

    On Factorization, Quark Counting, and Vector Dominance

    Get PDF
    Using an eikonal structure for the scattering amplitude, Block and Kaidalov have derived factorization theorems for nucleon-nucleon, γp\gamma p and γγ\gamma\gamma scattering at high energies, using only some very general assumptions. We present here an analysis giving experimental confirmation for factorization of cross sections, nuclear slope parameters B and ρ\rho-values (ratio of real to imaginary portion of forward scattering amplitudes), showing that: i) the three factorization theorems hold, ii) the additive quark model holds to ~1%, and iii) vector dominance holds to better than ~4%.Comment: Latex2e, 11 pages, 6 postscript figures, uses epsfig.sty. Version to be published in Eur. Phys. Jour.

    Hadronic Total Cross-sections Through Soft Gluon Summation in Impact Parameter Space

    Get PDF
    The Bloch-Nordsieck model for the parton distribution of hadrons in impact parameter space, constructed using soft gluon summation, is investigated in detail. Its dependence upon the infrared structure of the strong coupling constant αs\alpha_s is discussed, both for finite as well as singular, but integrable, αs\alpha_s. The formalism is applied to the prediction of total proton-proton and proton-antiproton cross-sections, where screening, due to soft gluon emission from the initial valence quarks, becomes evident.Comment: 20 pages, Latex2e, input FEYNMAN,12 postscipt figures. Submitted to PR

    Total Widths And Slopes From Complex Regge Trajectories

    Get PDF
    Maximally complex Regge trajectories are introduced for which both Re α(s)\alpha(s) and Im α(s)\alpha(s) grow as s1ϵs^{1-\epsilon} (ϵ\epsilon small and positive). Our expression reduces to the standard real linear form as the imaginary part (proportional to ϵ\epsilon) goes to zero. A scaling formula for the total widths emerges: ΓTOT/M\Gamma_{TOT}/M\to constant for large M, in very good agreement with data for mesons and baryons. The unitarity corrections also enhance the space-like slopes from their time-like values, thereby resolving an old problem with the ρ\rho trajectory in πN\pi N charge exchange. Finally, the unitarily enhanced intercept, αρ0.525\alpha_{\rho}\approx 0.525, \nolinebreak is in good accord with the Donnachie-Landshoff total cross section analysis.Comment: 9 pages, 3 Figure

    Adhesion State Estimation for Electrostatic Gripper Based on Online Capacitance Measure

    Get PDF
    Electroadhesion is a suitable technology for developing grippers for applications where fragile, compliant or variable shape objects need to be grabbed and where a retention action is typically preferred to a compression force. This article presents a self-sensing technique for electroadhesive devices (EAD) based on the capacitance measure. Specifically, we demonstrate that measuring the variation of the capacitance between electrodes of an EAD during the adhesion can provide useful information to automatically detect the successful grip of an object and the possible loss of adhesion during manipulation. To this aim, a dedicated electronic circuit is developed that is able to measure capacitance variations while the high voltage required for the adhesion is activated. A test bench characterization is presented to evaluate the self-sensing of capacitance during different states: (1) the EAD is far away from the object to be grasped; (2) the EAD is in contact with the object, but the voltage is not active (i.e., no adhesion); and (3) the EAD is activated and attached to the object. Correlation between the applied voltage, object material and shape and capacitance is made. The self-sensing EAD is then demonstrated in a closed-loop robotic application that employs a robot manipulator arm to pick and place objects of different kinds
    corecore