7 research outputs found

    The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations

    Get PDF
    Epidemiological research suggests that paternal obesity may increase the risk of fathering small for gestational age offspring. Studies in non-human mammals indicate that such associations could be mediated by DNA methylation changes in spermatozoa that influence offspring development in utero. Human obesity is associated with differential DNA methylation in peripheral blood. It is unclear, however, whether this differential DNA methylation is reflected in spermatozoa. We profiled genome-wide DNA methylation using the Illumina MethylationEPIC array in a cross-sectional study of matched human blood and sperm from lean (discovery n = 47; replication n = 21) and obese (n = 22) males to analyse tissue covariation of DNA methylation, and identify obesity-associated methylomic signatures. We found that DNA methylation signatures of human blood and spermatozoa are highly discordant, and methylation levels are correlated at only a minority of CpG sites (~1%). At the majority of these sites, DNA methylation appears to be influenced by genetic variation. Obesity-associated DNA methylation in blood was not generally reflected in spermatozoa, and obesity was not associated with altered covariation patterns or accelerated epigenetic ageing in the two tissues. However, one cross-tissue obesity-specific hypermethylated site (cg19357369; chr4:2429884; P = 8.95 × 10−8; 2% DNA methylation difference) was identified, warranting replication and further investigation. When compared to a wide range of human somatic tissue samples (n = 5,917), spermatozoa displayed differential DNA methylation across pathways enriched in transcriptional regulation. Overall, human sperm displays a unique DNA methylation profile that is highly discordant to, and practically uncorrelated with, that of matched peripheral blood. We observed that obesity was only nominally associated with differential DNA methylation in sperm, and therefore suggest that spermatozoal DNA methylation is an unlikely mediator of intergenerational effects of metabolic traits

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts

    No full text

    C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts.

    Get PDF
    OBJECTIVE: We sought to characterize C9orf72 expansions in relation to genetic ancestry and age at onset (AAO) and to use these measures to discriminate the behavioral from the language variant syndrome in a large pan-European cohort of frontotemporal lobar degeneration (FTLD) cases. METHODS: We evaluated expansions frequency in the entire cohort (n = 1,396; behavioral variant frontotemporal dementia [bvFTD] [n = 800], primary progressive aphasia [PPA] [n = 495], and FTLD-motor neuron disease [MND] [n = 101]). We then focused on the bvFTD and PPA cases and tested for association between expansion status, syndromes, genetic ancestry, and AAO applying statistical tests comprising Fisher exact tests, analysis of variance with Tukey post hoc tests, and logistic and nonlinear mixed-effects model regressions. RESULTS: We found C9orf72 pathogenic expansions in 4% of all cases (56/1,396). Expansion carriers differently distributed across syndromes: 12/101 FTLD-MND (11.9%), 40/800 bvFTD (5%), and 4/495 PPA (0.8%). While addressing population substructure through principal components analysis (PCA), we defined 2 patients groups with Central/Northern (n = 873) and Southern European (n = 523) ancestry. The proportion of expansion carriers was significantly higher in bvFTD compared to PPA (5% vs 0.8% [p = 2.17 × 10-5; odds ratio (OR) 6.4; confidence interval (CI) 2.31-24.99]), as well as in individuals with Central/Northern European compared to Southern European ancestry (4.4% vs 1.8% [p = 1.1 × 10-2; OR 2.5; CI 1.17-5.99]). Pathogenic expansions and Central/Northern European ancestry independently and inversely correlated with AAO. Our prediction model (based on expansions status, genetic ancestry, and AAO) predicted a diagnosis of bvFTD with 64% accuracy. CONCLUSIONS: Our results indicate correlation between pathogenic C9orf72 expansions, AAO, PCA-based Central/Northern European ancestry, and a diagnosis of bvFTD, implying complex genetic risk architectures differently underpinning the behavioral and language variant syndromes

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore