197 research outputs found

    BatchRank: A Novel Batch Mode Active Learning Framework for Hierarchical Classification

    Get PDF
    Active learning algorithms automatically identify the salient and exemplar instances from large amounts of unlabeled data and thus reduce human annotation effort in inducing a classification model. More recently, Batch Mode Active Learning (BMAL) techniques have been proposed, where a batch of data samples is selected simultaneously from an un- labeled set. Most active learning algorithms assume a at label space, that is, they consider the class labels to be in- dependent. However, in many applications, the set of class labels are organized in a hierarchical tree structure, with the leaf nodes as outputs and the internal nodes as clusters of outputs at multiple levels of granularity. In this paper, we propose a novel BMAL algorithm (BatchRank) for hi- erarchical classification. The sample selection is posed as an NP-hard integer quadratic programming problem and a convex relaxation (based on linear programming) is derived, whose solution is further improved by an iterative truncated power method. Finally, a deterministic bound is established on the quality of the solution. Our empirical results on sev- eral challenging, real-world datasets from multiple domains, corroborate the potential of the proposed framework for real- world hierarchical classification applications

    Epithelial Immunization Induces Polyfunctional CD8+ T Cells and Optimal Mousepox Protection.

    Get PDF
    We assessed several routes of immunization with vaccinia virus (VACV) in protecting mice against ectromelia virus (ECTV). By a wide margin, skin scarification provided the greatest protection. Humoral immunity and resident-memory T cells notwithstanding, several approaches revealed that circulating, memory CD8(+) T cells primed via scarification were functionally superior and conferred enhanced virus control. Immunization via the epithelial route warrants further investigation, as it may also provide enhanced defense against other infectious agents

    Adaptive gene regulatory networks

    Full text link
    Regulatory interactions between genes show a large amount of cross-species variability, even when the underlying functions are conserved: There are many ways to achieve the same function. Here we investigate the ability of regulatory networks to reproduce given expression levels within a simple model of gene regulation. We find an exponentially large space of regulatory networks compatible with a given set of expression levels, giving rise to an extensive entropy of networks. Typical realisations of regulatory networks are found to share a bias towards symmetric interactions, in line with empirical evidence.Comment: 5 pages RevTe

    The Human Cytomegalovirus Chemokine vCXCL-1 Modulates Normal Dissemination Kinetics of Murine Cytomegalovirus In Vivo

    Get PDF
    Human cytomegalovirus (HCMV) is a betaherpesvirus that is a significant pathogen within newborn and immunocompromised populations. Morbidity associated with HCMV infection is the consequence of viral dissemination. HCMV has evolved to manipulate the host immune system to enhance viral dissemination and ensure long-term survival within the host. The immunomodulatory protein vCXCL-1, a viral chemokine functioning primarily through the CXCR2 chemokine receptor, is hypothesized to attract CXCR2+ neutrophils to infection sites, aiding viral dissemination. Neutrophils harbor HCMV in vivo; however, the interaction between vCXCL-1 and the neutrophil has not been evaluated in vivo. Using the mouse model and mouse cytomegalovirus (MCMV) infection, we show that murine neutrophils harbor and transfer infectious MCMV and that virus replication initiates within this cell type. Utilizing recombinant MCMVs expressing vCXCL-1 from the HCMV strain (Toledo), we demonstrated that vCXCL-1 significantly enhances MCMV dissemination kinetics. Through cellular depletion experiments, we observe that neutrophils impact dissemination but that overall dissemination is largely neutrophil independent. This work adds neutrophils to the list of innate cells (i.e., dendritic and macrophages/monocytes) that contribute to MCMV dissemination but refutes the hypothesis that neutrophils are the primary cell responding to vCXCL-1

    If cooperation is likely punish mildly: Insights from economic experiments based on the snowdrift game

    Get PDF
    Punishment may deter antisocial behavior. Yet to punish is costly, and the costs often do not offset the gains that are due to elevated levels of cooperation. However, the effectiveness of punishment depends not only on how costly it is, but also on the circumstances defining the social dilemma. Using the snowdrift game as the basis, we have conducted a series of economic experiments to determine whether severe punishment is more effective than mild punishment. We have observed that severe punishment is not necessarily more effective, even if the cost of punishment is identical in both cases. The benefits of severe punishment become evident only under extremely adverse conditions, when to cooperate is highly improbable in the absence of sanctions. If cooperation is likely, mild punishment is not less effective and leads to higher average payoffs, and is thus the much preferred alternative. Presented results suggest that the positive effects of punishment stem not only from imposed fines, but may also have a psychological background. Small fines can do wonders in motivating us to chose cooperation over defection, but without the paralyzing effect that may be brought about by large fines. The later should be utilized only when absolutely necessary.Comment: 15 pages, 6 figures; accepted for publication in PLoS ON

    Benevolent characteristics promote cooperative behaviour among humans

    Full text link
    Cooperation is fundamental to the evolution of human society. We regularly observe cooperative behaviour in everyday life and in controlled experiments with anonymous people, even though standard economic models predict that they should deviate from the collective interest and act so as to maximise their own individual payoff. However, there is typically heterogeneity across subjects: some may cooperate, while others may not. Since individual factors promoting cooperation could be used by institutions to indirectly prime cooperation, this heterogeneity raises the important question of who these cooperators are. We have conducted a series of experiments to study whether benevolence, defined as a unilateral act of paying a cost to increase the welfare of someone else beyond one's own, is related to cooperation in a subsequent one-shot anonymous Prisoner's dilemma. Contrary to the predictions of the widely used inequity aversion models, we find that benevolence does exist and a large majority of people behave this way. We also find benevolence to be correlated with cooperative behaviour. Finally, we show a causal link between benevolence and cooperation: priming people to think positively about benevolent behaviour makes them significantly more cooperative than priming them to think malevolently. Thus benevolent people exist and cooperate more

    Sustainable institutionalized punishment requires elimination of second-order free-riders

    Get PDF
    Although empirical and theoretical studies affirm that punishment can elevate collaborative efforts, its emergence and stability remain elusive. By peer-punishment the sanctioning is something an individual elects to do depending on the strategies in its neighborhood. The consequences of unsustainable efforts are therefore local. By pool-punishment, on the other hand, where resources for sanctioning are committed in advance and at large, the notion of sustainability has greater significance. In a population with free-riders, punishers must be strong in numbers to keep the "punishment pool" from emptying. Failure to do so renders the concept of institutionalized sanctioning futile. We show that pool-punishment in structured populations is sustainable, but only if second-order free-riders are sanctioned as well, and to a such degree that they cannot prevail. A discontinuous phase transition leads to an outbreak of sustainability when punishers subvert second-order free-riders in the competition against defectors.Comment: 7 two-column pages, 3 figures; accepted for publication in Scientific Report

    Mutually Positive Regulatory Feedback Loop between Interferons and Estrogen Receptor-α in Mice: Implications for Sex Bias in Autoimmunity

    Get PDF
    gene) and stimulates expression of target genes. female mice had relatively higher steady-state levels of mRNAs encoded by the IFN and ERα-responsive genes as compared to the age-matched males.Our observations identify a novel mutually positive regulatory feedback loop between IFNs and ERα in immune cells in mice and support the idea that activation of this regulatory loop contributes to sex bias in SLE
    corecore