
BatchRank: A Novel Batch Mode Active Learning
Framework for Hierarchical Classification

Shayok Chakraborty1, Vineeth Balasubramanian2, Adepu Ravi Sankar2,
Sethuraman Panchanathan3 and Jieping Ye4

1Electrical and Computer Engineering, Carnegie Mellon University
2Department of Computer Science and Engineering, Indian Institute of Technology, Hyderabad

3School of Computing, Informatics and Decision Systems Engineering, Arizona State University, AZ
4Department of Computational Medicine and Bioinformatics and Department of Electrical Engineering

and Computer Science, University of Michigan, Ann Arbor

ABSTRACT
Active learning algorithms automatically identify the salient
and exemplar instances from large amounts of unlabeled
data and thus reduce human annotation effort in inducing
a classification model. More recently, Batch Mode Active
Learning (BMAL) techniques have been proposed, where a
batch of data samples is selected simultaneously from an un-
labeled set. Most active learning algorithms assume a flat
label space, that is, they consider the class labels to be in-
dependent. However, in many applications, the set of class
labels are organized in a hierarchical tree structure, with
the leaf nodes as outputs and the internal nodes as clusters
of outputs at multiple levels of granularity. In this paper,
we propose a novel BMAL algorithm (BatchRank) for hi-
erarchical classification. The sample selection is posed as
an NP-hard integer quadratic programming problem and a
convex relaxation (based on linear programming) is derived,
whose solution is further improved by an iterative truncated
power method. Finally, a deterministic bound is established
on the quality of the solution. Our empirical results on sev-
eral challenging, real-world datasets from multiple domains,
corroborate the potential of the proposed framework for real-
world hierarchical classification applications.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.5.4 [Pattern
Recognition]: Applications

General Terms
Algorithms

Keywords
Active Learning, Hierarchical Classification, Optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’15 August 11 - 14, 2015, Sydney, NSW, Australia
Copyright 2015 ACM ISBN 978-1-4503-3664-2/15/08 ...$15.00
DOI: http://dx.doi.org/10.1145/2783258.2783298.

1. INTRODUCTION
Active learning algorithms have recently gained popular-

ity to reduce human annotation effort in training a classifi-
cation/regression model. When exposed to large amounts of
unlabeled data, such algorithms automatically identify the
informative samples for manual labeling. Of late, there have
been research attempts towards batch mode active learning
(BMAL), where a batch of unlabeled samples is selected si-
multaneously for manual annotation.

Most BMAL algorithms have been developed for a flat
label space, that is, they treat all the category labels inde-
pendently [14, 11]. However, in many applications, the class
labels are organized in the form of a tree hierarchy, where
the leaf nodes contain the output classes and the internal
nodes denote a super-set of the outputs at different levels
of granularity. For instance, text documents are often rep-
resented as a hierarchy of classes, based on their contents
[16, 21]; medical images can be annotated using a class hier-
archy for efficient classification [7]. Due to the tremendous
increase in the generation of digital data, taxonomies and
hierarchies are becoming increasing popular to adequately
organize and interpret them. Thus, there is a pronounced
need for an active batch selection framework in the context
of hierarchical classification.

In this paper, we propose a novel BMAL algorithm, which
exploits the hierarchical structure of the label tree to select
the informative unlabeled samples for manual annotation.
The sample selection is expressed as an NP-hard integer
quadratic programming (IQP) problem. We then derive a
convex relaxation, based on linear programming, and show
that the batch selection task reduces to a score ranking prob-
lem (hence the name BatchRank). Finally, a deterministic
bound is derived on the quality of the solution, obtained
using the relaxation. To the best of our knowledge, this
is the first research effort to derive a concrete mathemati-
cal guarantee on the solution quality of batch mode active
learning in hierarchical classification. We note here that the
purpose of this work is not to derive a bound on the number
of queries required to achieve a given generalization error in
active learning. This problem has been extensively studied
in the literature [12, 1]. Our objective is to derive a math-
ematical guarantee on the solution quality of the convex
relaxation of BMAL in hierarchical classification, which, to
the best of our knowledge, has not been addressed till date.

2. RELATED WORK
We start with a survey of active learning in general and

then present the few existing work in active learning for
hierarchical classification.

Active Learning: Active learning is a well-studied prob-
lem in the machine learning literature. Several techniques
have been developed over the last few years and a review of
these can be found in [23]. In a typical pool-based active
learning setting, the learner is exposed to a pool of unla-
beled samples and it iteratively selects samples for manual
annotation. Pool-based active learning is further classified
into single instance selection (where a single unlabeled sam-
ple is selected in each iteration) and batch selection (where
a batch of samples is selected simultaneously and is effective
in utilizing the presence of multiple labeling oracles). Since
the focus of this research is on batch mode active learning
(BMAL), we present existing work in this field below.

Initial BMAL techniques were largely based on extend-
ing the pool-based approaches to the batch setting using
greedy heuristics [2, 22]. More recently, optimization based
strategies have been proposed which have been shown to
outperform the heuristic approaches. Hoi et al. [15, 13]
used the Fisher information matrix as a measure of model
uncertainty and proposed to query the set of points that
maximally reduced the Fisher information. The same au-
thors [14] proposed a BMAL scheme based on SVMs where
a kernel function was first learned from a mixture of labeled
and unlabeled samples, which was then used to identify
the informative and diverse examples through a min-max
framework. Guo and Schuurmans [11] proposed a discrimi-
native strategy that selected a batch of points which maxi-
mized the log-likelihoods of the selected points with respect
to their optimistically assigned class labels and minimized
the entropy of the unselected points in the unlabeled pool.
Recently, Guo [10] proposed a batch mode active learning
scheme which maximized the mutual information between
the labeled and unlabeled sets and was independent of the
classification model.

Active Learning in Hierarchical Classification: Ow-
ing to the explosive growth in the amount of digital data,
hierarchies are becoming increasingly popular to efficiently
organize and categorize data. This has led to the develop-
ment of several hierarchical classification algorithms. Such
algorithms usually associate a vector wi with each node i
in the label tree and can be broadly categorized into two
groups: recursive and non-recursive. The recursive algo-
rithms start with the root node and label a data sample
sequentially by selecting the category for which the associ-
ated vector outputs the largest score among its siblings, until
a leaf node is reached [27, 8]. Specifically, given a training
set {(x1, y1), (x2, y2), . . . (xN , yN)}, a vector wi ∈ <n is as-
sociated with each node i ∈ Y , where Y is the set of all
labels in the tree. Let C(i) denote the set of all children of
node i. The recursive procedure uses classifiers f(x) that
are parameterized by w1, w2, . . . wm through the following
recursive procedure:

f(x) =


initialize : i = 0

while C(i) is not empty

i = arg maxj∈C(i) w
T
j x

return i

(1)

Non-recursive classifiers have also been proposed in the con-

text of hierarchical classification [3, 6]. A popular approach
is:

f(x) = arg max
i∈Y

wTi x (2)

Even though hierarchical classification has been extensively
studied, active learning in hierarchical classification is less
explored. Researchers have begun to study this problem
only recently (in the last 2-3 years). Li et al. [18, 19] used
uncertainty sampling to select informative samples for ac-
tive learning in hierarchical classification, in the context of
text mining. The fundamental idea of their approach was
to intelligently subdivide the unlabeled pool so as to min-
imize the so-called out-of-domain queries. Cheng et al.[5]
proposed a variance based uncertainty measure to query
a set of informative unlabeled samples. The fundamental
idea was to identify a continuous semantic space underly-
ing the hierarchical structure. All the labels in the category
tree were then embedded into the latent semantic space.
The variance was computed by considering each label as a
point and the uncertainty was computed using this variance.
The same authors also introduced an active batch selection
framework in the hierarchical setting using a diversity cri-
terion together with the uncertainty measure [4]. To com-
pute the diversity, a graph structure was used to identify
the highly connected unlabeled points. A k nearest neigh-
bor graph was built for every unlabeled point, which was
weighted by a Gaussian kernel; the weighted matrix was used
to rank all the unlabeled samples according to their diversi-
ties. In each iteration, the unlabeled sample furnishing the
maximum weighted uncertainty and diversity score was se-
lected for manual annotation. This algorithm, Hierarchical-
Structured Embedded Variance (HSEV) was shown to out-
perform the previous approaches and is the state-of-the-art.
Even though they exhibit good empirical performance, these
techniques are heuristic in nature and also lack any quanti-
tative guarantees on the solution quality.

In this paper, we present a novel batch mode active learn-
ing framework for hierarchical classification. Our algorithm
has a concrete mathematical foundation and also provides
strong theoretical guarantees on the quality of the obtained
solution. We now describe the proposed framework.

3. PROPOSED FRAMEWORK
The recursive classifiers of the form in Equation (1) have

been shown to outperform the non-recursive counterparts
both in terms of accuracy and computational efficiency, in
hierarchical classification [27]. We therefore use a recursive
model as the underlying classifier in our framework.

3.1 Problem Set-up
Consider a batch mode active learning problem, where we

are given a training set Lt and an unlabeled set Ut at time
t. Let wt be the classifier trained on Lt and let Y denote
the set of all labels in the hierarchical label tree of depth d.
The objective is to select a batch B (containing k points)
from Ut in such a way that the future learner wt+1, trained
on Lt

⋃
B, has maximum generalization capability.

Batch Selection Criterion: We quantify the quality of
a batch of selected samples based on their informativeness
and diversity, that is, each point in the selected batch should
furnish valuable information and the selected samples should
have minimal redundancy among them.

Formally, we compute an information vector c ∈ <|Ut|×1

where c(i) denotes the information furnished by the point xi
in the unlabeled pool. The uncertainty of the trained model
on a given sample xi is used as a measure of information of
that sample; higher uncertainty values denote higher degrees
of information. Let yl denote the set of labels in level l of
the label tree. The uncertainty of an unlabeled sample xi
at level l is given by the entropy S(yl|xi) of the distribution
P (yl|xi), such that:

S(yl|xi) = −
∑
y∈yl

P (y|xi) logP (y|xi) (3)

The posterior probability at a given node is obtained from
the corresponding classification model trained at the node.
The aggregate uncertainty of an unlabeled sample xi is com-
puted as the summation of the entropy values at all levels
in the label tree.

c(i) =

d∑
l=1

S(yl|xi) (4)

Intuitively, the uncertainty of an unlabeled sample is com-
puted as the sum of the entropy values at each level while
classifying the sample using a recursive classifier.

Further, to maximize the contribution of the selected un-
labeled samples, diversity based criteria have been proposed
[24] which ensure that the selected samples have maximal
divergence (minimal redundancy) among them. To this end,

we compute a divergence matrixR ∈ <|Ut|×|Ut|, whose (i, j)th

entry is a measure of redundancy between unlabeled points
xi and xj (higher the value of Rij , lower the redundancy).
In our formulation, we compute the diversity between a pair
of unlabeled samples as their kernelized distance. Then, the
(i, j)th entry in the matrix R is given by:

R(i, j) = φ(xi, xj) (5)

Computational Considerations: Let A ∈ <n×p de-
note the matrix of n unlabeled samples, each with dimension
p. The redundancy matrix R involves computation of the
pairwise distance matrix AAT , which has a complexity of
O(n2p). This may be expensive (and often prohibitive) for
large n and p, which are frequently encountered in modern
applications.

We first note that the matrix R needs to be computed just
once in our framework. Once we have the pairwise distance
matrix of all the unlabeled samples, we can keep deleting the
corresponding rows and columns from the distance matrix
(as batches of unlabeled samples are selected for annotation)
to get an updated distance matrix for the new set of unla-
beled samples. This matrix can be computed offline before
the active learning iterations commence. Further, we use
the concept of random projections to reduce the computa-
tional overhead. Random projections have been successfully
used to speed up computations, where the original data ma-
trix A ∈ <n×p is multiplied by a random projection matrix
X ∈ <p×d to obtain a projected matrix B ∈ <n×d in the
lower dimensional space d:

B =
1√
d
AX (6)

where d << min(n, p). X is typically populated using the
entries from the standard normal distribution N(0, 1), lead-
ing to many well-known theoretical results [25]. In our work,

we adopt the idea of Very Sparse Random Projections pro-
posed by Li et al. [17]. The random matrix X is computed
as:

X(j, i) =
√
s


1, with prob 1

2s

0, with prob 1− 1
s

−1 with prob 1
2s

(7)

We use s =
√
p to significantly speed up the computation,

by a factor of
√
p or more [17]. Let {ui}ni=1 ∈ <p denote

the rows in the original data matrix A and {vi}ni=1 ∈ <d
be the rows in the projected data matrix B, such that vi =
1√
d
XTui. Also, let u1, u2, v1, v2 denote the two leading rows

respectively. Then, it can be proved that [17]:

E(||v1 − v2||2) = ||u1 − u2||2 (8)

Very sparse random projections therefore preserve pairwise
2-norm distances in expectations while offering significant
computational speed-ups. Please refer [17] for more results
and detailed derivations.

Active Batch Selection Framework: By definition,
all the entries in c and R are non-negative, that is, ci ≥ 0
and rij ≥ 0. Also, Rii = 0,∀i. Given c and R, our objective
is to select a batch of points having high information scores
and high divergence (or minimal redundancy) among them.
For notational simplicity, we combine c and R into a single
matrix D ∈ <|Ut|×|Ut| as follows:

D(i, j) =

{
R(i, j), if i 6= j

λc(i), if i = j
(9)

where each entry in the matrix D is non-negative, that is
dij ≥ 0, ∀i, j. λ is a trade-off parameter. We note that the
matrix D can be defined suitably based on the application
at hand. Without any loss of generality, we proceed with
the criterion based on entropy and diversity and explain our
framework.

We now formulate the batch selection task as an explicit
mathematical optimization problem, where the objective is
to select a batch of points with high aggregate uncertainty
scores and high divergences among them. Specifically, we
define a binary vector m with |Ut| entries (m ∈ {0, 1}|Ut|×1)
where each entry mi denotes whether the corresponding un-
labeled point xi will be included in the batch (mi = 1) or not
(mi = 0). Our batch selection criterion (with given batch
size k) can thus be expressed using the following integer
quadratic programming (IQP) problem:

max
m

mTDm

s.t. mi ∈ {0, 1},∀i and

|Ut|∑
i=1

mi = k (10)

The binary constraint on mi makes this IQP problem NP-
hard. We now discuss an efficient relaxation to solve this
NP-hard problem 1.

3.2 An Efficient Convex Relaxation
We first show that the IQP in Equation (10) is equivalent

to an Integer Linear Programming (ILP) problem.

1The problem is presumed to be NP-hard as D is just a
symmetric matrix, without any other special properties. A
formal proof will be taken up as part of future research.

Lemma 1. The Integer Quadratic Programming batch mode
active learning formulation in Equation (10) can be simpli-
fied into an equivalent Integer Linear Programming (ILP)
problem.

Proof. We introduce a binary matrix Z = (zij) with
zij = mi.mj . Thus, the optimization problem in (10) re-
duces to:

max
m,Z

∑
i,j

dijzij

s.t. zij = mimj ,

|Ut|∑
i=1

mi = k, and mi ∈ {0, 1}, ∀i (11)

The quadratic equality constraint zij = mimj makes this
problem difficult to solve. We can show that this quadratic
constraint, in fact, allows itself to be represented as a simpler
linear inequality −mi − mj + 2zij ≤ 0, ∀i, j. This ensures
that the value of zij is 0 if either mi or mj (or both) is equal
to 0. When both mi and mj are equal to 1, zij is free to be
either 0 or 1. However, the maximization criterion in (11)
forces the value of zij to be 1 since dij ≥ 0. Hence, the
problem can now be written as:

max
m,Z

∑
i,j

dijzij

s.t. −mi −mj + 2zij ≤ 0,∀i, j

and

|Ut|∑
i=1

mi = k,mi, zij ∈ {0, 1}, ∀i, j (12)

This is an integer LP problem, proving Lemma 1.

Although a global maximum exists for the ILP, it is com-
putationally expensive to compute. To solve such an ILP, a
standard approach is to employ the LP relaxation.

Lemma 2. The convex LP relaxation of the above ILP
(Equation 12) in Lemma 1 is equivalent to a ranking formu-
lation based on the entries in the matrix D.

Proof. We consider the following linear program relax-
ation:

max
m,Z

∑
i,j

dijzij

s.t. −mi −mj + 2zij ≤ 0,∀i, j,
|Ut|∑
i=1

mi = k

and mi, zij ∈ [0, 1],∀i, j (13)

Since this is a maximization problem with dij ≥ 0, at opti-

mality, zij =
mi+mj

2
(from the inequality constraint −mi −

mj + 2zij ≤ 0). Hence, (13) is equivalent to:

max
m

1

2

∑
i,j

dij(mi +mj)

s.t.

|Ut|∑
i=1

mi = k and mi ∈ [0, 1], ∀i (14)

This formulation admits an analytical (as well as an inte-
ger) solution for m by a simple ranking based on the entries
in the matrix D. The objective in (14) can be written as∑
i,j dijmi +

∑
i,j dijmj . Since the matrix D is symmetric,

the maximization problem essentially becomes equivalent to
ranking the column sums of D (hence the name BatchRank).
This proves Lemma 2.

3.3 Solution Bound of BatchRank
In this section, we prove a bound on the solution to the

convex LP relaxation in (14) with respect to the solution of
the original NP-hard integer quadratic programming prob-
lem. To this end, we transform the original maximization
problem in Equation (10) into an equivalent minimization
problem through the following objective function:

f(m) = ||D||1 −mTDm (15)

where ||D||1 =
∑
i,j dij . We note that since ||D||1 is con-

stant for a given matrix D, maximizing mTDm as in Equa-
tion (10) is equivalent to minimizing the function f(.) de-
fined above, that is, maximizing mTDm and minimizing f(.)
as defined above will fetch the same solution to the variable
m. Since we are interested in the solution quality of m, we
prove an upper bound on the minimization problem in Equa-
tion (15). Since the solution to m is the same, it is essentially
equivalent to proving a bound on the original maximization
problem in Equation (10). The main result is summarized
in the following theorem:

Theorem 1. Let m∗ and m̂ be the optimal solutions of
the original NP-hard IQP in Equation (10) and the convex
relaxation in Equation (14) respectively. Then,

f(m̂) ≤ 2f(m∗)

Proof. The optimization in (14) is an LP relaxation of
the quadratic formulation in (10) and thus the objective
value of (14) is larger than that of (10). That is,

m∗TDm∗ ≤ 1

2

∑
i,j

dij(m̂i + m̂j)

=
1

2

∑
i,j:m̂i+m̂j=1

dij +
∑

i,j:m̂i+m̂j=2

dij (16)

Since all entries in D are non-negative, the following holds:

||D||1 =
∑
ij

dij

=
∑

i,j:m̂i+m̂j=2

dij +
∑

i,j:m̂i+m̂j=1

dij +
∑

i,j:m̂i+m̂j=0

dij

≥
∑

i,j:m̂i+m̂j=2

dij +
∑

i,j:m̂i+m̂j=1

dij

Thus, ∑
i,j:m̂i+m̂j=1

dij ≤ ||D||1 −
∑

i,j:m̂i+m̂j=2

dij (17)

Combining the above two, we have

f(m∗) = ||D||1 −m∗TDm∗

≥ ||D||1 −
1

2

∑
i,j:m̂i+m̂j=1

dij −
∑

i,j:m̂i+m̂j=2

dij

≥ ||D||1 −
1

2

||D||1 − ∑
i,j:m̂i+m̂j=2

dij


−

∑
i,j:m̂i+m̂j=2

dij

=
1

2

||D||1 − ∑
i,j:m̂i+m̂j=2

dij

 =
1

2
f(m̂)

The first inequality follows from Equation (16) and the sec-
ond from Equation (17). The last equality is true because
in the evaluation of mTDm, only the indices where both mi

and mj are 1 will survive, others will vanish. This completes
the proof of the theorem. We thus note that the convex re-
laxation of the original NP-hard problem in BatchRank has
a guaranteed bound on the solution quality.

3.4 The Iterative Truncated Power Algorithm
As evident from Lemma 2, the LP relaxation of the NP-

hard IQP in Equation (10) reduces to selecting a set of k
unlabeled points producing the k largest column sums of
the matrix D. To further improve the solution, we use the
iterative truncated-power algorithm proposed by Yuan and
Zhang [26]. This solution was proposed in the context of
the sparse eigenvalue problem and was also shown to be
applicable to the densest k-subgraph problem (DkS). Math-
ematically, DkS can be expressed as a binary quadratic pro-
gramming problem, equivalent to Equation (10). Starting
with an initial approximation x0, the algorithm generates
a sequence of solutions x1, x2, At each time step t, the
vector xt−1 is multiplied by the weight matrix D and then
the entries are truncated to zeros except for the k largest
entries, which becomes the new solution xt. This process is
repeated until convergence. This simple, yet efficient algo-
rithm has a guaranteed monotonic convergence for a positive
semi-definite weight matrix D. When the matrix D is not
psd, the algorithm can be run on the shifted quadratic func-
tion (with a positive scalar added to the diagonal elements)
to guarantee a monotonic convergence [26].

We use the BatchRank solution as the initial approxima-
tion x0 followed by the iterative truncated power method to
derive the final set of unlabeled samples to be selected for
manual annotation. Since the convergence is monotonic, the
quality of the solution can only improve over the iterations
and the bound established in Theorem 1 on the quality of
the solution still holds. Moreover, the running time increases
only marginally due to the iterative process as it involves
minimal computational overhead and converges fast. The
pseudo-code for the BatchRank algorithm is given in Algo-
rithm 1. The complexity of the algorithm is O(n2), where n
is the number of unlabeled samples.

4. EXPERIMENTS AND RESULTS

4.1 Datasets and Experimental Setup
We used 9 datasets from different application domains,

with varied feature dimensions and label tree sizes, in our

Algorithm 1 BatchRank algorithm for Batch Mode Active
Learning in Hierarchical Classification

Require: Training set Lt, Unlabeled set Ut and batch size k

1: Train a classifier wt on the training set Lt
2: Compute information vector c (Equation 4) and the di-

vergence matrix R (Equation 5)
3: Compute the matrix D, as described in Equation 9
4: Compute a vector v ∈ <|Ut|×1 containing the column

sums of D
5: Identify the k largest entries in v and derive the initial

solution x0
6: t = 1
7: repeat

8: Compute x
′
t = D.xt−1

9: Identify Ft as the index set of x
′
t with top k values

10: Set xt to be 1 on the index set Ft and 0 otherwise
11: t = t + 1
12: until Convergence
13: Select a batch of k unlabeled samples based on the final

solution xt

experiments, to corroborate the generalizibility of our frame-
work. Each dataset was divided into an initial training set,
an unlabeled set and a test set. For a given batch size k, each
algorithm selected k instances from the unlabeled pool to be
labeled in each iteration. After each iteration, the selected
points were removed from the unlabeled set, appended to
the training set and the performance was evaluated on the
test set. The goal was to study the improvement in perfor-
mance on the test set with increasing sizes of the training
set. The setup is similar to previous work [4]. All the re-
sults were averaged over 5 runs, to mitigate the effects of
randomness. The dataset details together with the train-
ing, unlabeled and test splits are summarized in Table 1 (we
only consider data samples that belong to a single leaf node
in the label tree; multi-label samples, belonging to multiple
leaf nodes simultaneously were discarded). The algorithms
were implemented in MATLAB on an Intel Core processor
with 2.60 GHz CPU and 6 GB RAM. The weight parameter
λ was selected as 4 and a Gaussian kernel with parameter
1 was used to compute the kernelized distances between the
unlabeled samples (based on preliminary experiments).

The entropy term in the objective function necessitates
a classifier which can provide concrete posterior probability
estimates of its output classes. We therefore used the hier-
archical Logistic Regression (LR) as the base classification
model in our experiments. As depicted in Equation (1), the
hierarchical LR traverses the label tree from the root until it
reaches a leaf node, and at each node, follows the child that
has the largest classification score. The label at the final leaf
node is the predicted label. Since most datasets used in our
experiments are high dimensional and sparse (Table 1), we
used the SLEP package [20] to train the models.

4.2 Competing Algorithms
We compared the proposed framework against the follow-

ing three algorithms: (i) Random Sampling, where a batch
of samples is queried at random (used for baseline compari-
son), (ii) Uncertainty Sampling, which computes the entropy
of every unlabeled sample on the leaf-node labels and the top

Dataset Dimensionality Label Tree Size Initial Training Unlabeled Testing Batch Size
20 Newsgroups 26,214 25 100 2,900 2,000 30

Astronomy 54,632 34 100 700 845 10
Biology 148,644 99 100 1,900 1,151 30
CLEF 80 47 100 2,900 2,000 30

Earth Sciences 71,756 52 100 1,900 1,102 30
Math 108,559 104 100 1,900 1,862 30

OHSUMED 18,143 87 100 2,900 2000 30
Reuters 47,236 97 100 2,900 2000 30
WIPO 74,437 188 100 900 700 20

Table 1: Dataset Details

k uncertain points are queried for annotation (k being the
batch size) [5] and (iii) Hierarchical-Structured Embedded
Variance (HSEV) (proposed by Cheng et al. [4]), which uses
an uncertainty and diversity based criterion for sample se-
lection and is the state-of-the-art for BMAL in hierarchical
classification. However, the HSEV is based on a heuristic
sample selection strategy, where at every iteration, the un-
labeled sample with the maximum weighted sum of uncer-
tainty and diversity values is selected for annotation. Our
method, on the other hand, is based on a concrete mathe-
matical formulation and also provides theoretical guarantees
on the quality of the solution.

4.3 Evaluation Metrics
We used the zero-one error (error rate) and the tree-loss

error (the graph distance between the predicted and ac-
tual categories) to study the performance of the algorithms.
These are commonly used evaluation metrics in hierarchical
classification [27].

4.4 Active Learning Performance
The results are depicted in Figure 1 (0/1 error) and Fig-

ure 2 (tree-loss error). In each graph, the x-axis denotes
the number of iterations (rounds of active learning) and
the y-axis denotes the error (0/1 or tree-loss). The pro-
posed framework outperforms Random Sampling on all the
datasets; both the zero-one error and the tree loss error drop
at a faster rate with increasing size of the labeled set. The
BatchRank algorithm therefore identifies the salient and ex-
emplar instances for manual annotation and attains a given
level of performance with much reduced human labeling ef-
fort. The Uncertainty Sampling and HSEV methods depict
better performance than Random Sampling, but are not as
good as BatchRank. The proposed framework depicts the
best performance in terms of both the evaluation metrics.
The results unanimously lead to the conclusion that our
algorithm outperforms HSEV and the other baselines con-
sistently across all datasets. For the Biology and WIPO,
however, the performance of all the algorithms are close.

We conducted a 2-sided paired t-test at the significance
level of p < 0.05, to compare the performance of the pro-
posed BatchRank algorithm against its closest competitor
across all datasets (such a test has been previously used to
analyze the performance of active learning algorithms [10]).
Our analysis revealed that the proposed framework outper-
forms its closest competitor on 8 out of the 9 datasets used
in our study (except the OHSUMED dataset). The per-
formance improvement achieved by BatchRank is therefore
statistically significant.

Dataset Uncertain HSEV BatchRank
20 News 2.82±1.83 3.37±2.03 5.93±1.87

Astronomy 0.90±0.57 1.17±0.71 3.77±0.82
Biology 9.80±2.62 19.32±2.08 27.78±4.87
CLEF 0.84±0.61 1.22±0.79 3.56±1.07

Sciences 3.13±1.19 6.32±2.78 7.47±2.26
Math 8.56±2.27 15.90±3.16 17.28±3.11

Ohsumed 3.79±2.31 6.06±3.66 9.28±2.94
Reuters 5.72±3.83 12.75±3.92 16.23±3.36
WIPO 3.17±2.07 13.56±3.59 19.22±3.89

Table 2: Average time taken (in seconds) to query
a batch of samples from the unlabeled set.

4.5 Computation Time Analysis
In this section, we study the computation time of the

BMAL algorithms. Random Sampling does not take any
time practically, since it does not involve any computations;
we hence exclude it from our analysis. For the proposed
BatchRank algorithm, a pairwise distance matrix needs to
be computed, as detailed in Section 3.1. This needs to be
computed just once and can be done offline before the ac-
tive learning process starts and the selected unlabeled data
samples are passed to the human annotators for labeling.
We therefore do not include the time taken for the distance
matrix computation in our run-time analysis.

Table 2 reports the average time taken to query a batch
of samples by each algorithm. The Entropy method is the
most efficient in terms of computation; however, it is not
consistent in its performance, as noted in Figures 1 and 2.
The proposed framework depicts comparable run-time as
the HSEV method. Our method, therefore, outperforms the
HSEV algorithm in terms of learning performance and incurs
only marginal increment in computational overhead.

4.6 Solution Quality Analysis
In this section, we empirically validate the quality of the

solution obtained using the proposed algorithm, for different
values of the number of unlabeled samples n and the batch

size k. We plot the ratio m̂TDm̂
m∗TDm∗

, where m̂ is the solution
obtained using the BatchRank framework (together with the
truncated power iterations) and m∗ is the optimal solution
(note that the IQP in Equation (10) can be solved exactly for
small scale problems, which gives us the optimal solution).
We present results for n = 40, 60 and k = 10, 20, for each
value of n, in Figure 3. Each figure depicts the results of
500 random, symmetric matrices for the specific n and k.
We note that the ratio of the functional values obtained
using our method is very close to 1 (greater than 0.8 in
most cases). This corroborates the fact that the proposed
framework yields high quality approximations of the NP-

(a) 20 News (b) Astronomy (c) Biology

(d) CLEF (e) Earth Sciences (f) Math

(g) OHSUMED (h) Reuters (i) WIPO

Figure 1: BMAL for Hierarchical Classification - Zero One Error Graphs (Best viewed in color.)

hard IQP (Equation (10)) and the solutions obtained very
closely match the optimal.

4.7 Parameter Sensitivity
In this section, we study the effect of batch size (number of

samples selected in each iteration of active learning) and the
size of the initial training set, on the learning performance.
We used the 20 Newsgroups dataset for this study and the
zero-one error was used as the evaluation metric. To study
the effect of batch size, we used the same training, unlabeled
and test splits, as outlined in Table 1. Four different batch
sizes were studied - 10, 30, 50 and 100. The results are pre-
sented in Figure 4; the proposed algorithm depicts the best
performance across all batch sizes.

We used the following four values of the initial training
set to study its effect: 50, 100, 150 and 200. The sizes of the
unlabeled and test sets were the same as in Table 1. The
batch size was fixed at 30. The results are shown in Figure 5.
From the results, we conclude that the proposed framework
outperforms the other algorithms consistently.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed a novel BMAL algorithm for

multi-class hierarchical classification. The selective sam-
pling problem was posed as an NP-hard integer quadratic
programming; we then derived a convex relaxation to solve
the NP-hard IQP and established a bound on the solution
quality of the relaxation. Our empirical results on several
challenging, real-world datasets corroborate the merit of the
proposed approach over the state-of-the-art techniques and
also the fact that it delivers high quality solutions. Future
work will mainly involve extension of our framework to hi-
erarchical, multi-label active learning.

6. ACKNOWLEDGMENT
This research is sponsored in part by NIH LM010730 and

ONR N00014-11-1-0108.

7. REFERENCES
[1] M. Balcan, S. Hanneke, and J. Vaughan. The true sample

complexity of active learning. In Machine Learning, 2010.

(a) 20 News (b) Astronomy (c) Biology

(d) CLEF (e) Earth Sciences (f) Math

(g) OHSUMED (h) Reuters (i) WIPO

Figure 2: BMAL for Hierarchical Classification - Tree Loss Error Graphs (Best viewed in color)

[2] K. Brinker. Incorporating diversity in active learning with
support vector machines. ICML, 2003.

[3] L. Cai and T. Hofmann. Hierarchical document
categorization with support vector machines. In CIKM,
2004.

[4] Y. Cheng, Z. Chen, H. Fei, F. Wang, and A. Choudhary.
Batch mode active learning with hierarchical-structured
embedded variance. In SDM, 2014.

[5] Y. Cheng, K. Zhang, Y. Xie, A. Agarwal, and
A. Choudhary. On active learning in hierarchical
classification. In CIKM, 2012.

[6] O. Dekel, J. Keshet, and Y. Singer. Large margin
hierarchical classification. In ICML, 2004.

[7] I. Dimitrovski, D. Kocev, S. Loskovska, and S. Dzeroski.
Hierchical annotation of medical images. In International
Multiconference - Information Society IS, 2008.

[8] S. Dumais and T. Chen. Hierarchical classification of web
content. In Proceedings of SIGIR, 2000.

[9] M. Goemans and D. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems
using semidefinite programming. In Journal of the ACM,
1995.

[10] Y. Guo. Active instance sampling via matrix partition. In

NIPS, 2010.

[11] Y. Guo and D. Schuurmans. Discriminative batch mode
active learning. In NIPS, 2007.

[12] S. Hanneke. A bound on the label complexity of agnostic
active learning. In ICML, 2007.

[13] S. Hoi, R. Jin, and M. Lyu. Batch mode active learning
with applications to text categorization and image retrieval.
IEEE TKDE, 2009.

[14] S. Hoi, R. Jin, J. Zhu, and M. Lyu. Semi-supervised SVM
batch mode active learning for image retrieval. In CVPR,
2008.

[15] S. C. H. Hoi, R. Jin, and M. R. Lyu. Large-scale text
categorization by batch mode active learning. In WWW.
ACM, 2006.

[16] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new
benchmark collection for text categorization research. In
JMLR, 2004.

[17] P. Li, T. Hastie, and K. Church. Very sparse random
projections. In KDD, 2006.

[18] X. Li, D. Kuang, and C. Ling. Active learning for
hierarchical text classification. In PAKDD, 2012.

[19] X. Li, C. Ling, and H. Wang. Effective top-down active
learning for hierarchical text classification. In PAKDD,

(a) n = 40, k = 10 (b) n = 40, k = 20 (c) n = 60, k = 10 (d) n = 60, k = 20

Figure 3: Analysis of Solution Quality of the Proposed Framework

(a) Batch Size 10 (b) Batch Size 30 (c) Batch Size 50 (d) Batch Size 100

Figure 4: Effect of Batch Size on the 20 Newsgroups dataset - Zero One Error Graphs (Best viewed in color)

2013.

[20] J. Liu, S. Ji, and J. Ye. SLEP: Sparse learning with efficient
projections. In Technical Report, Arizona State University,
2009.

[21] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor.
Kernel–based learning of hierarchical multilabel
classification models. In JMLR, 2006.

[22] G. Schohn and D. Cohn. Less is more: Active learning with
support vector machines. In ICML, 2000.

[23] B. Settles. Active learning literature survey. In Technical
Report 1648, University of Wisconsin-Madison, 2010.

[24] D. Shen, J. Zhang, J. Su, G. Zhou, and C. Tan.
Multi-criteria-based active learning for named entity
recognition. In ACL, 2004.

[25] S. Vempala. The random projection method. In Americal
Mathematical Society, 2004.

[26] X. Yuan and T. Zhang. Truncated power method for sparse
eigenvalue problems. In JMLR, 2013.

[27] D. Zhou, L. Xiao, and M. Wu. Hierarchical classification
via orthogonal transfer. In ICML, 2011.

APPENDIX
A. AN IMPROVED BOUND ON THE SOLU-

TION QUALITY
In section 3.3, we derived a deterministic bound on the

solution quality of the BatchRank algorithm. In this section,
we attempt to improve the guarantee on the solution quality.
To this end, we present a second convex relaxation to solve
the original NP-hard IQP. Starting with Equation (10), we
first make the following variable transformation:

yi = 2(mi −
1

2
)⇒ mi =

yi + 1

2

⇒
n∑
i=1

yi = 2

n∑
i=1

mi − n = 2k − n , p

where n = |Ut| is the number of unlabeled data samples
in the unlabeled pool. The entire optimization problem in
Equation (10) is now rewritten in terms of the new variable

y (ignoring the constant 1
4
):

max
y

∑
i,j

dij(yi + 1)(yj + 1)

s.t. yi ∈ {−1, 1}, ∀i and

|Ut|∑
i=1

yi = p (18)

A.1 Multi-dimensional Relaxation
Since solving the integer quadratic program in Equation

(18) is NP hard, we consider relaxations of the constraints.
Specifically, we follow the strategy proposed by Goemans
and Williamson [9], where each variable yi is relaxed to
a multidimensional vector vi belonging to <n of unit Eu-
clidean norm, instead of a one dimensional scalar variable.
In other words, we assume that each vector vi belongs to
the n-dimensional unit sphere Sn. The relaxation of the NP
hard problem in Equation (18) is therefore given by (ignor-
ing the constant 1):

max
v

∑
i,j

dij(v
T
i vj + vT0 vi + vT0 vj) (19)

s.t. vi ∈ Sn, ∀i and

|Ut|∑
i=1

vi = p (20)

where v0 is a vector of n-dimensions with all entries 1. (The
equality constraint in Equation (20) implies that the sum
across all the entries in all the vi vectors should equal the
scalar constant p. This is because each scalar variable yi was
relaxed into a vector variable vi and the sum of all yi was
constrained to be equal to p). Once we solve for the vec-
tors v from this formulation (we present the solution details
below), we select a random unit vector r that is uniformly
distributed on the unit sphere and find the dot product of
r with every vector vi. We then select the set of unlabeled
points whose corresponding v vectors yield a positive dot

(a) Initial Training Size 50 (b) Initial Training Size
100

(c) Initial Training Size 150 (d) Initial Training Size
200

Figure 5: Effect of Initial Training Set Size on the 20 Newsgroups dataset - Zero One Error Graphs (Best
viewed in color)

product with the random unit vector r, as in [9]. However,
we note that the number of positive dot products may not
exactly equal k, which means that the number of instances
selected by this algorithm may not equal the pre-specified
batch size.

A.2 Semi-Definite Programming (SDP) Relax-
ation

Using the decomposition Q = BTB, we note that any pos-
itive semi-definite (psd) matrix with diagonal entries 1 corre-
sponds to a set of unit vectors vi if we correspond the vector
vi to the ith column of the matrix B. Then, qij = vivj ,
which accounts for the term vTi vj in the objective function
of Equation (19). However, to incorporate the terms vT0 vi
and vT0 vj in the objective, the matrix Q is decomposed as

Q =

(
vT0
BT

)(
v0 B

)
where B = [v1 v2 . . . vn]. We can therefore rewrite the entire
relaxation in terms of the defined matrix Q (in the previous
equation) as follows:

max
Q

∑
i,j

di,j(Qi+1,j+1 +Q1,i+1 +Q1,j+1) (21)

s.t. Qii = 1, for i = 2 to n+1,
n+1∑
j=2

Q1j = p, Q11 = n and Q � 0 (Q is psd)

This is a semi-definite programming (SDP) problem and can
be solved using existing software packages like SeDuMi.

A.3 Probabilistic Solution Guarantee
We first rewrite the objective in Equation (19) in a sim-

plified form as follows:∑
i,j

dij(v
T
i vj + vT0 vi + vT0 vj) =

∑
i,j

d̂ij(v
T
i vj)

where v0 is the vector obtained from the first row of the
decomposed matrix after solving the SDP problem and d̂ij
is obtained from dij , to simplify the representation. The
main result regarding the solution bound of this algorithm
is summarized in the following theorem:

Theorem 2. Let W denote the value of the objective func-
tion produced using the algorithm and E(W) denote its ex-

pectation. Also, let D̂total denote the sum of all entries in

the matrix D̂. Then,the following bound holds:

[E(W) + D̂total] ≥ 0.87856

[∑
i,j

d̂ijvivj + D̂total

]
Proof. Consider a random unit vector r. By the lin-

earity of expectation, the expectation of the value of the
objective function is given by (we drop the sub-scripts i and
j from the summation for notational convenience):

E(W) =
∑

d̂ij [1.P r(sgn(vi.r) = sgn(vj .r))

+ (−1).P r(sgn(vi.r) 6= sgn(vj .r))]

=
∑

d̂ij [1− 2.P r(sgn(vi.r) 6= sgn(vj .r))]

=
∑

d̂ij

[
1− 2

arccos(vi.vj)

π

]
where sgn(x) = 1 if x ≥ 0 and −1 otherwise. The last
equality follows from the result proved by Goemans and
Williamson [9]. Further, it can be shown that for −1 ≤
z ≤ 1, 1− arccos(z)

π
≥ α. 1

2
(1 + z), where

α = min
0≤θ≤π

2

π
.

θ

1− cos θ
≥ 0.87856

(the proof of the above inequality can be found in [9]). That

is, 1−2arccos(z)
π

≥ α(1+z)−1. Since in our formulation, the
vis are all unit vectors, we have −1 ≤ z = vivj ≤ 1, ∀i, j.
Therefore, 1− 2

arccos(vivj)

π
≥ α(1 + vivj)− 1.

Combining all of the above, we get

E(W) ≥
∑

d̂ij [α(1 + vivj)− 1]

= α
∑

d̂ijvivj + (α− 1)D̂total

⇒ [E(W) + D̂total] ≥ α

[∑
i,j

d̂ijvivj + D̂total

]
which proves the theorem.

This relaxation therefore provides a better guarantee on
the quality of the solution. However, this method involves
solving an SDP problem, which is computationally more ex-
pensive than the previous approach. Also, the number of
selected samples may not exactly equal the batch size. A
thorough investigation of this solution methodology will be
taken up as part of future research.

