10 research outputs found

    Stable CoO2_2 Nanoscrolls With Outstanding Electrical Properties

    Full text link
    Layered CoO2_2 is of great interest for its promising properties but is meta-stable in its bulk form. CoO2_2 was synthesized in a long-term stable nanotubular or scrolled form by converting the quasi-one-dimensional crystal structure of bulk Ca3_3Co2_2O6_6 via a hydrothermal treatment. The resulting one-dimensional nanostructures with very thin walls are investigated in detail. The CoO_22 is found to crystallize in monoclinic form, similar to the related CaCoO2_2-CoO2_2 misfit structure. Individual nanoscrolls are characterized electrically and show a p-type semiconducting nature with a high current-carrying capacity of 7.6×1067.6 \times 10^6 A/cm2^2 and an extremely high breakdown voltage of 27 kV/cm. The results demonstrate the possibility to stabilize meta-stable materials in low-dimensional forms and a promising application of the nanoscrolls as interconnect in high-voltage electronic circuitry

    Strontium-deficient SrxCoO2-CoO2 nanotubes as a high ampacity and high conductivity material

    Get PDF
    Continuous miniaturization of electronics demands the development of interconnectors with high ampacity and high conductivity, which conventional conductors such as copper and gold cannot offer. Here we report the synthesis of Sr-deficient misfit SrxCoO2–CoO2 nanotubes by a novel crystal conversion method and investigate their electrical properties. Bulk Sr6Co5O15 having a quasi-one-dimensional CoO6 polyhedral structure (face-sharing octahedron and trigonal prismatic CoO6 arranged in one-dimension) is converted to SrxCoO2–CoO2 nanotubes where CoO2 adopts a two-dimensional edge-sharing CoO2 layered structure in a basic hydrothermal process. Electrical properties measured on individual nanotubes demonstrate that these nanotubes are semiconducting with a conductivity of 1.28 × 104 S cm−1 and an ampacity of 109 A cm−2, which is the highest reported ampacity value to date of any inorganic oxide-based material. The nanotubes also show a breakdown power per unit channel length (P/L) of ∼38.3 W cm−1, the highest among the regularly used interconnect materials. The above results demonstrate that SrxCoO2–CoO2 nanotubes are potential building blocks for high-power electronic applications.Prof. L.S.P. would like to acknowledge Science and Engineering Research Board under the Department of Science and Technology (DST-SERB), Government of India for funding (EMR/2016/003594). K.S.R. acknowledges the Department of Chemistry, Department of Physics and Department of Materials Engineering and Materials Science, Indian Institute of Technology (IIT) Bombay and Industrial Research and Consultancy Center (IRCC), Sophisticated Analytical Instrument Facility (SAIF), Centre of Excellence in Nanoelectronics (CEN) IIT Bombay and Fund for Improvement of S&T Infrastructure (FIST) for all the facilities provided. K.S.R. sincerely thanks Gayatri Vaidya at IIT Bombay for helpful assistance and discussion about the fabrication process. S.H. and R.A. acknowledge funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 889546 and from the Spanish MICINN (project grant PID2019-104739GB-100/AEI/10.13039/501100011033). R. A. acknowledges funding from the Government of Aragon (project DGA E13-20R) and European Union H2020 program “ESTEEM3” (823717).Peer reviewe

    Atomic Structural Studies on Thin Single-Crystalline Misfit-Layered Nanotubes of TbS-CrS<sub>2</sub>

    No full text
    Various nanotubes from ternary misfit compounds have been reported in recent years. In the present work, the detailed atomic structure and chemical configuration of misfit-layered nanotubes based on the TbS-CrS<sub>2</sub> are reported. These analyses have been developed via different transmission electron microscopy techniques, including high-resolution scanning transmission electron microscopy, electron diffraction, and electron energy loss spectroscopy. These structural analyses show that two different kinds of nanotubes can be produced: a “regular” nanotube and a “wavy” one. Both kinds of nanotubes show the alternating arrangements of the TbS and CrS<sub>2</sub> subsystems; however, the wavy ones present a nearly periodically deficiency in terbium. In addition to the structural investigation, the chemical analyses have proved that the outer layer of both kinds of nanotubes is composed of the elements Cr and S. All these findings helped to understand the growth mechanism during the sulfurization reaction taking place in the synthesis process

    Nanotubes from Oxide-Based Misfit Family: The Case of Calcium Cobalt Oxide

    Get PDF
    Misfit layered compounds (MLCs) have generated significant interest in recent years as potential thermoelectric materials. MLC nanotubes could reveal behavior that is entirely different from the bulk material. Recently, new chemical strategies were exploited for the synthesis of nanotubular forms of chalcogenide-based MLCs, which are promising candidates for thermoelectric materials. However, analogous synthesis of oxide-based MLC nanotubes has not been demonstrated until now. Here, we report a chemical strategy for synthesis of cobalt-oxide-based misfit nanotubes. A combination of high-resolution (scanning) transmission electron microscopy (including image simulations), spatially resolved electron energy-loss spectroscopy, electron diffraction, and density functional theory (DFT) calculations is used to discover the formation of a phase within these nanotubes that differs significantly from bulk calcium cobaltite MLCs. Furthermore, DFT calculations show that this phase is semiconducting with a band gap in excess of 1 eV, unlike bulk calcium cobaltite MLCs, which are known to be metallic. Through systematic experiments, we propose a formation mechanism for these nanotubes that could also apply more generally to realizing other oxide-based MLC nanotubes

    Strontium Cobalt Oxide Misfit Nanotubes

    Get PDF
    Low-dimensional misfit layered compounds have been found to have ultralow thermal conductivity, which is attributed to their unique structure and the low dimensionality. There are a few studies reporting the preparation of sulfide-based misfit nanotubes but only one study on oxide-based analogs. In this investigation, we report a new oxide-based misfit nanotube derived from misfit layered strontium cobaltite. Thorough structural investigation by electron microscopy techniques, including electron diffraction, aberration corrected high-resolution (scanning) transmission electron microscopy, and electron energy-loss spectroscopy along with density functional theory calculations show that these nanotubes consist of alternating layers of SrCoO<sub>2</sub> and CoO<sub>2</sub>. We have studied systematically the effect of base concentration on the structure and composition of the nanotubes, which reveals the importance of misfit stress to tightly roll the structure into tubular form and thus control the synthesis. Electronic structure calculations find that the structures are semiconducting with a ferrimagnetic ground state. Our studies further extend the family of bulk misfit layered oxides into the 1D realm with potential applications in thermoelectric and electronic devices

    Nanotubes from Misfit Layered Compounds: A New Family of Materials with Low Dimensionality

    No full text
    Nanotubes that are formed from layered materials have emerged to be exciting one-dimensional materials in the last two decades due to their remarkable structures and properties. Misfit layered compounds (MLC) can be produced from alternating assemblies of two different molecular slabs with different periodicities with the general formula [(MX)1+x]m[TX2]n (or more simply MS-TS2), where M is Sn, Pb, Bi, Sb, rare earths, T is Sn, Nb, Ta, Ti, V, Cr, and so on, and X is S, Se. The presence of misfit stresses between adjacent layers in MLC provides a driving force for curling of the layers that acts in addition to the elimination of dangling bonds. The combination of these two independent forces leads to the synthesis of misfit layered nanotubes, which are newcomers to the broad field of one-dimensional nanostructures and nanotubes. The synthesis, characterization, and microscopic details of misfit layered nanotubes are discussed, and directions for future research are presente
    corecore