Atomic Structural Studies on Thin Single-Crystalline Misfit-Layered Nanotubes of TbS-CrS<sub>2</sub>

Abstract

Various nanotubes from ternary misfit compounds have been reported in recent years. In the present work, the detailed atomic structure and chemical configuration of misfit-layered nanotubes based on the TbS-CrS<sub>2</sub> are reported. These analyses have been developed via different transmission electron microscopy techniques, including high-resolution scanning transmission electron microscopy, electron diffraction, and electron energy loss spectroscopy. These structural analyses show that two different kinds of nanotubes can be produced: a “regular” nanotube and a “wavy” one. Both kinds of nanotubes show the alternating arrangements of the TbS and CrS<sub>2</sub> subsystems; however, the wavy ones present a nearly periodically deficiency in terbium. In addition to the structural investigation, the chemical analyses have proved that the outer layer of both kinds of nanotubes is composed of the elements Cr and S. All these findings helped to understand the growth mechanism during the sulfurization reaction taking place in the synthesis process

    Similar works

    Full text

    thumbnail-image

    Available Versions