3 research outputs found

    Investigating the role of the Itoigawa-Shizuoka tectonic line towards the evolution of the Northern Fossa Magna rift basin

    Get PDF
    AbstractThe Itoigawa-Shizuoka tectonic line (ISTL) fault system is considered to have one of the highest probabilities for a major inland earthquake occurrence in the whole of Japan. It is a complex fault system with the dip directions of the local fault segments changing from north to south between an east-dipping low-angle thrust fault, a strike slip fault and a west-dipping thrust fault. The tectonic relations between the different parts of the fault system and the surrounding geological units are yet to be fully explained. This study aims to reveal the juncture of the northern and central parts of the ISTL and investigate its contribution towards the shaping of the Northern Fossa Magna rift basin. We conducted 3 deployments of 1 or 2 linear arrays of seismic stations across the central and northern ISTL regions and observed local micro-earthquakes for a period of 3 years. Each deployment recorded continuous waveform data for approximately 3 months. Using arrival times of 1193 local earthquakes, we jointly determined earthquake locations and a 3D velocity model, applying the tomography method. We were able to image the regional crustal structures from the surface to a depth of 20km with a spatial resolution of 5km. Subsequently, we used the obtained 3D velocity model to relocate the background local seismicity from 2003 to 2009. The juncture of the northern and central parts of the ISTL was well constrained by our results. The depth extension of the northern parts of the ISTL fault segments follows the bottom of the Miocene Northern Fossa Magna rift basin (NFM) and forms an east-dipping low-angle fault. In contrast, the central parts of the ISTL fault segments are estimated to lie along the eastern boundary of the Matsumoto basin forming an oblique strike slip fault (Fig. 1)

    Dynamic rupture propagation on geometrically complex fault with along-strike variation of fault maturity: insights from the 2014 Northern Nagano earthquake

    No full text
    Abstract Understanding the effect of the complex fault geometry on the dynamic rupture process and discriminating it from the complexity originating from the rheological properties of faults, is an essential subject in earthquake science. The 2014 Northern Nagano earthquake, which occurred near the end zone of a major active fault system, provided unique observations that enabled us to investigate both the detailed geometrical fault structure and surface deformation patterns as well as the temporal sequence led up from a prominent foreshock activity. We first develop a geometrical fault model with a substantial variation along strike, and a model for the regional stress field, which is well constrained by the observations. This significant along-strike variation in fault geometry probably reflects the difference of fault maturity at the end zone of the complex fault system. We used this model in order to conduct a set of dynamic rupture simulations using the highly efficient spatiotemporal boundary integral equation method. Based on our simulations, we show that the observed surface deformation can be reasonably explained as the effect of the non-planar fault geometry with a number of branch faults and bends. Graphical abstract
    corecore