41 research outputs found
Recommended from our members
Evaluation of the Linear Relationship Between Pulse Arrival Time and Blood Pressure in ICU Patients: Potential and Limitations
A variety of techniques based on the indirect measurement of blood pressure (BP) by Pulse Transit Time (PTT) have been explored over the past few years. Such an approach has the potential in providing continuous and non-invasive beat to beat blood pressure without the use of a cuff. Pulse Arrival Time (PAT) which includes the cardiac pre-ejection period has been proposed as a surrogate of PTT, however, the balance between its questioned accuracy and measurement simplicity has yet to be established. The present work assessed the degree of linear relationship between PAT and blood pressure on 96 h of continuous electrocardiography and invasive radial blood pressure waveforms in a group of 11 young ICU patients. Participants were selected according to strict exclusion criteria including no use of vasoactive medications and presence of clinical conditions associated with cardiovascular diseases. The average range of variation for diastolic BP was 60 to 79 mmHg while systolic BP varied between 123 and 158 mmHg in the study database. The overall Pearson correlation coefficient for systolic and diastolic blood pressure was −0.5 and −0.42, respectively, while the mean absolute error was 3.9 and 7.6 mmHg. It was concluded that the utilization of PAT for the continuous non-invasive blood pressure estimation is rather limited according to the experimental setup, nonetheless the correlation coefficient performed better when the range of variation of blood pressure was high over periods of 30 min suggesting that PAT has the potential to be used as indicator of changes relating to hypertensive or hypotensive episodes
Recommended from our members
Direct pulse oximetry within the esophagus, on the surface of abdominal viscera, and on free flaps
Pulse oximetry is a noninvasive photometric technique that provides information about arterial blood oxygen saturation (SpO2) and heart rate and has widespread clinical applications. This is accomplished via peripheral pulse oximetry probes mainly attached to the finger, toe, or earlobe. The direct application of pulse oximetry to an organ, such as the esophagus, liver, bowel, stomach or free flap, might provide an indication of how well perfused an organ or a free flap is. Also, the placement of a pulse oximetry probe at a more central site, such as the esophagus, might be more reliable at a time when conventional peripheral pulse oximetry fails
Recommended from our members
Photoplethysmographic measurements from the esophagus using a new fiber-optic reflectance sensor
A prototype fiber-optic reflectance-mode pulse oximetry sensor and measurement system is developed for the purposes of estimating arterial oxygen saturation in the esophagus. A dedicated probe containing miniature right-angled glass prisms coupled to light sources and a photodetector by means of optical fibers is designed and used to record photoplethysmographic (PPG) signals from the esophageal epithelium in anesthetized patients. The probe is inserted simply by an anesthesiologist in all cases, and signals are recorded successfully in all but one of 20 subjects, demonstrating that esophageal PPG signals can be reliably obtained. The mean value of the oxygen saturation recorded from the esophagus for all subjects is 94.0 ± 4.0%. These results demonstrate that SpO2 may be estimated in the esophagus using a fiber-optic probe
Recommended from our members
Measuring venous oxygenation using the photoplethysmograph waveform
OBJECTIVE: We investigate the hypothesis that the photoplethysmograph (PPG) waveform can be analyzed to infer regional venous oxygen saturation.
METHODS: Fundamental to the successful isolation of the venous saturation is the identification of PPG characteristics that are unique to the peripheral venous system. Two such characteristics have been identified. First, the peripheral venous waveform tends to reflect atrial contraction. Second, ventilation tends to move venous blood preferentially due to the low pressure and high compliance of the venous system. Red (660 nm) and IR (940 nm) PPG waveforms were collected from 10 cardiac surgery patients using an esophageal PPG probe. These waveforms were analyzed using algorithms written in Mathematica. Four time-domain saturation algorithms (ArtSat, VenSat, ArtInstSat, VenInstSat) and four frequency-domain saturation algorithms (RespDC, RespAC, Cardiac, and Harmonic) were applied to the data set.
RESULTS: Three of the algorithms for calculating venous saturation (VenSat, VenInstSat, and RespDC) demonstrate significant difference from ArtSat (the conventional time-domain algorithm for measuring arterial saturation) using the Wilcoxon signed-rank test with Bonferroni correction (p < 0.0071).
CONCLUSIONS: This work introduces new algorithms for PPG analysis. Three algorithms (VenSat, VenInstSat, and RespDC) succeed in detecting lower saturation blood. The next step is to confirm the accuracy of the measurement by comparing them to a gold standard (i.e., venous blood gas)
Recommended from our members
Measurement of splanchnic photoplethysmographic signals using a new reflectance fiber optic sensor
Splanchnic organs are particularly vulnerable to hypoperfusion. Currently, there is no technique that allows for the continuous estimation of splanchnic blood oxygen saturation (SpO(2)). As a preliminary to developing a suitable splanchnic SpO(2) sensor, a new reflectance fiber optic photoplethysmographic (PPG) sensor and processing system are developed. An experimental procedure to examine the effect of fiber source detector separation distance on acquired PPG signals is carried out before finalizing the sensor design. PPG signals are acquired from four volunteers for separation distances of 1 to 8 mm. The separation range of 3 to 6 mm provides the best quality PPG signals with large amplitudes and the highest signal-to-noise ratios (SNRs). Preliminary calculation of SpO(2) shows that distances of 3 and 4 mm provide the most realistic values. Therefore, it is suggested that the separation distance in the design of a fiber optic reflectance pulse oximeter be in the range of 3 to 4 mm. Preliminary PPG signals from various splanchnic organs and the periphery are obtained from six anaesthetized patients. The normalized amplitudes of the splanchnic PPGs are, on average, approximately the same as those obtained simultaneously from the periphery. These observations suggest that fiber optic pulse oximetry may be a valid monitoring technique for splanchnic organs
Evaluation of Electrical and Optical Plethysmography Sensors for Noninvasive Monitoring of Hemoglobin Concentration
Completely noninvasive monitoring of hemoglobin concentration has not yet been fully realized in the clinical setting. This study investigates the viability of measuring hemoglobin concentration noninvasively by evaluating the performance of two types of sensor using a tissue phantom perfused with a blood substitute. An electrical sensor designed to measure blood volume changes during the cardiac cycle was used together with an infrared optical sensor for detection of erythrocyte-bound hemoglobin. Both sensors demonstrated sensitivity to changes in pulse volume (plethysmography). The electrical sensor produced a signal referred to as capacitance plethysmograph (CPG) a quantity which was invariant to the concentration of an infrared absorbing dye present in the blood substitute. The optical sensor signal (photoplethysmograph) increased in amplitude with increasing absorber concentration. The ratio PPG:CPG is invariant to pulse pressure. This quantity is discussed as a possible index of in vivo hemoglobin concentration
Impact of autoimmune thyroiditis on primary hyperparathyroidism
Aim. Primary hyperparathyroidism (PHPT) often coexists with thyroid diseases. Current guidelines advise preoperative ultrasound (US) examination of the thyroid gland for thyroid nodular disease or concomitant malignancy but not evaluation for autoimmune thyroiditis (AIT). The impact of autoimmune thyroiditis on the clinical presentation and intraoperative course of PHPT is not clear.
Material and methods. We retrospectively assessed the medical records of 21 patients with PHPT who underwent parathyroidectomy. Clinical, biochemical, ultrasonographic and intraoperative data were evaluated.
Results. There was a longer duration of parathyroidectomy in patients with AIT than in those without (113.3 min vs. 93.9 min, P=0.03). A lower rate of kidney stones was noted in patients with autoimmune thyroiditis (44.4% vs. 0%, P=0.03). Patients with AIT were more symptomatic, but this was not significant. There was no difference between the two groups in the prevalence of osteoporosis or thyroid nodular disease.
Conclusions. A significantly longer duration of parathyroidectomy was seen in PHPT patients with AIT. Patients with PHPT undergoing surgery should be investigated for autoimmune thyroiditis, as this may affect surgical planning
Recommended from our members
Photoplethysmography for an independent measure of pulsatile pressure under controlled flow conditions
Noninvasive continuous blood pressure measurements are desirable for patients and clinicians. This work proposes and validates a method for transmural pressure measurement using photoplethysmography (PPG) in an in vitro setup that allows control of pressure and flow conditions. The optimum pulsatile volume measure is obtained by comparing parameters extracted from the photoplethysmographic signal (AC amplitude, normalized pulse volume (NPV) and adjusted pulse volume (APV)). Pulsatile volume can then provide pressure measurements using the exponential pressure-volume (P-V) relationship and validated using the gold standard catheter pressure measurement. Pressure, red (R) and infrared (IR) PPG signals were recorded continuously in two arterial models with different cross-sectional areas (Model 1 and Model 2) utilising a pulsatile pump. Flow rates were controlled by varying pumping frequencies at low and high stroke volumes. The optimum method for estimation of the pulsatile volume is through APV, which had a highly significant correlation (r (2)  =  0.99, p  <  0.001) for Model 1 and (r (2)  =  0.98, p  <  0.001) for Model 2. APV obtained a significantly better fit when compared to NPVIR (r (2)  =  0.73, z  =  25.85, p  <  0.001), NPVR (r (2)  =  0.95, z  =  12.26, p  <  0.001), IRAC (r (2)  =  0.52, z  =  28.29, p  <  0.0001) and RAC (r (2)  =  0.92, z  =  15.27, p  <  0.0001) in Model 1, and when compared to NPVIR (r (2)  =  0.92, z  =  10.23, p  <  0.0001), NPVR (r (2)  =  0.96, z  =  5.08, p  <  0.001) IRAC (r (2)  =  0.63, z  =  22.47, p  <  0.0001) and RAC (r (2)  =  0.92, z  =  17.70, p  <  0.0001) in Model 2. These preliminary findings suggest that APV could be used as a potential non-invasive continuous method of blood pressure measurement at different flow conditions
Recommended from our members
Improved measurement technique for the characterization of organic and inorganic phase change materials using the T-history method
In the past decade, the interest in phase change materials (PCMs) has grown significantly due to their ability to store large amounts of thermal energy in relatively small temperature intervals. Accurate knowledge of thermo-physical properties is a prerequisite for any reliable utilization of these materials. The T-history method is widely used for the investigation of PCM. This paper presents an improved measurement technique for the characterization of PCM using the T-history method. The suggested improvements include the arrangements made in three different prospects: the experimental setup, data processing and data representation. T-history measurements of organic RT21 and inorganic SP22 A17 (RUBITHERM® GmbH) PCM were performed. The applied arrangements resulted in the temperature accuracy of ±0.3 °C and the reduction of uncertainty associated with heat stored/released between the cooling and heating measurements. The obtained results showed some important aspects of the T-history PCM investigation and could provide more effective design and development process of the thermal energy storage systems based on the investigated materials