4 research outputs found

    Glutamatergic dysfunction leads to a hyper-dopaminergic phenotype through deficits in short-term habituation: a mechanism for aberrant salience

    Get PDF
    Psychosis in disorders like schizophrenia is commonly associated with aberrant salience and elevated striatal dopamine. However, the underlying cause(s) of this hyper-dopaminergic state remain elusive. Various lines of evidence point to glutamatergic dysfunction and impairments in synaptic plasticity in the etiology of schizophrenia, including deficits associated with the GluA1 AMPAR subunit. GluA1 knockout (Gria1βˆ’/βˆ’) mice provide a model of impaired synaptic plasticity in schizophrenia and exhibit a selective deficit in a form of short-term memory which underlies short-term habituation. As such, these mice are unable to reduce attention to recently presented stimuli. In this study we used fast-scan cyclic voltammetry to measure phasic dopamine responses in the nucleus accumbens of Gria1βˆ’/βˆ’ mice to determine whether this behavioral phenotype might be a key driver of a hyper-dopaminergic state. There was no effect of GluA1 deletion on electrically-evoked dopamine responses in anaesthetized mice, demonstrating normal endogenous release properties of dopamine neurons in Gria1βˆ’/βˆ’ mice. Furthermore, dopamine signals were initially similar in Gria1βˆ’/βˆ’ mice compared to controls in response to both sucrose rewards and neutral light stimuli. They were also equally sensitive to changes in the magnitude of delivered rewards. In contrast, however, these stimulus-evoked dopamine signals failed to habituate with repeated presentations in Gria1βˆ’/βˆ’ mice, resulting in a task-relevant, hyper-dopaminergic phenotype. Thus, here we show that GluA1 dysfunction, resulting in impaired short-term habituation, is a key driver of enhanced striatal dopamine responses, which may be an important contributor to aberrant salience and psychosis in psychiatric disorders like schizophrenia

    Data from: Functional heterogeneity within the rodent lateral orbitofrontal cortex dissociates outcome devaluation and reversal learning deficits

    No full text
    The orbitofrontal cortex (OFC) is critical for updating reward-directed behaviours flexibly when outcomes are devalued or when task contingencies are reversed. Failure to update behaviour in outcome devaluation and reversal learning procedures are considered canonical deficits following OFC lesions in non-human primates and rodents. We examined the generality of these findings in rodents using lesions of the rodent lateral OFC (LO) in instrumental action-outcome and Pavlovian cue-outcome devaluation procedures. LO lesions disrupted outcome devaluation in Pavlovian but not instrumental procedures. Furthermore, although both anterior and posterior LO lesions disrupted Pavlovian outcome devaluation, only posterior LO lesions were found to disrupt reversal learning. Posterior but not anterior LO lesions were also found to disrupt the attribution of motivational value to Pavlovian cues in sign-tracking. These novel dissociable task- and subregion-specific effects suggest a way to reconcile contradictory findings between rodent and non-human primate OFC research
    corecore