35 research outputs found

    (e,2e) measurements on xeon: reexamination of the fine-structure effect

    No full text
    The process of electron scattering from heavy target atoms is of considerable interest due to the enhanced role of relativistic effects and distortion of the electron trajectories resulting from the large value of nuclear charge. Here we present (e,2e) ionization measurements and distorted-wave Born approximation calculations for the scattering of spin-polarized electrons from xenon atoms in which the fine-structure levels of the residual ion are resolved. Comparison of measurements performed using a high-sensitivity toroidal analyzer spectrometer with the predictions of sophisticated calculations provide an improved understanding of the ionization dynamics of heavy target atoms and the treatment of electron exchange processes

    An experimental and theoretical study of transient negative ions in Mg, Zn, Cd and Hg

    Get PDF
    A range of experimental and theoretical techniques have been applied to the study of transient negative ions (resonances) formed in electron scattering from the Group II metals Mg, Zn, Cd, and Hg at incident electron energies below the first ionization potential. A wealth of resonance structures have been observed and from the experimental observations and theoretical information, classifications are proposed for some of these negative ion states

    (e,2e) Measurements on Xenon: Reexamination of the Fine-Structure Effect

    Get PDF
    The process of electron scattering from heavy target atoms is of considerable interest due to the enhanced role of relativistic effects and distortion of the electron trajectories resulting from the large value of nuclear charge. Here we present (e,2e) ionization measurements and distorted-wave Born approximation calculations for the scattering of spin-polarized electrons from xenon atoms in which the fine-structure levels of the residual ion are resolved. Comparison of measurements performed using a high-sensitivity toroidal analyzer spectrometer with the predictions of sophisticated calculations provide an improved understanding of the ionization dynamics of heavy target atoms and the treatment of electron exchange processes

    HopScotch - a low-power renewable energy base station network for rural broadband access

    Get PDF
    The provision of adequate broadband access to communities in sparsely populated rural areas has in the past been severely restricted. In this paper, we present a wireless broadband access test bed running in the Scottish Highlands and Islands which is based on a relay network of low-power base stations. Base stations are powered by a combination of renewable sources creating a low cost and scalable solution suitable for community ownership. The use of the 5~GHz bands allows the network to offer large data rates and the testing of ultra high frequency ``white space'' bands allow expansive coverage whilst reducing the number of base stations or required transmission power. We argue that the reliance on renewable power and the intelligent use of frequency bands makes this approach an economic green radio technology which can address the problem of rural broadband access

    Ionization of Atoms with Spin Polarized Electrons

    Get PDF
    The most detailed insight into the process of electron impact-induced ionization of atomic species is provided by measurements in which both kinematical and quantum mechanical variables are determined. Here we describe recent (e,2e) experimental and theoretical studies involving the ionization of xenon and argon by spin-polarized electrons in which the fine-structure levels of the ion are energetically resolved. Such investigations shed light on the mechanisms driving the ionization reaction and the role of exchange and relativistic processes

    An experimental and theoretical study of transient negative ions in Mg, Zn, Cd and Hg

    Get PDF
    A range of experimental and theoretical techniques have been applied to the study of transient negative ions (resonances) formed in electron scattering from the Group II metals Mg, Zn, Cd, and Hg at incident electron energies below the first ionization potential. A wealth of resonance structures have been observed and from the experimental observations and theoretical information, classifications are proposed for some of these negative ion states

    Performance Analysis of Microcellular Mobile Radio Systems with Selection Combining in the Presence of Arbitrary Number of Cochannel Interferences

    No full text
    In this paper, the performance of dual selection combining (SC) receiver in communications systems with a Rician desired signal affected by multiple Nakagami-m cochannel interferences (CCIs) is studied. This investigation is important since such environment seems to be the most realistic in microcellular radio communications systems. The performance analysis includes the channel correlation effect since in practice diversity is usually applied in small terminals so antenna elements can not be placed sufficiently apart to achieve independent fading channels. With assumption that CCIs are mutually independent and identically distributed, analytical expressions for the probability density function (PDF) and cumulative distribution function (CDF) of dual SC output signal-to-interference ratio (SIR) are derived and used to investigate important system performance measures, such as the average bit error probability (ABEP), channel capacity and outage probability. The proposed mathematical analysis is complemented by various graphically presented numerical results to show the effects of various system's parameters. In addition, the impact of diversity to the microcellular system's performance is also explored
    corecore