6 research outputs found

    Development of Nb-GaAs based superconductor semiconductor hybrid platform by combining in-situ dc magnetron sputtering and molecular beam epitaxy

    Full text link
    We present Nb thin films deposited in-situ on GaAs by combining molecular beam epitaxy and magnetron sputtering within an ultra-high vacuum cluster. Nb films deposited at varying power, and a reference film from a commercial system, are compared. The results show clear variation between the in-situ and ex-situ deposition which we relate to differences in magnetron sputtering conditions and chamber geometry. The Nb films have critical temperatures of around 9K9 \textrm{K}. and critical perpendicular magnetic fields of up to Bc2=1.4TB_{c2} = 1.4 \textrm{T} at 4.2K4.2 \textrm{K}. From STEM images of the GaAs-Nb interface we find the formation of an amorphous interlayer between the GaAs and the Nb for both the ex-situ and in-situ deposited material.Comment: 12 pages paper, 9 pages supplementary, 6 figures paper, 7 figures supplementar

    Calibration of Drive Non-Linearity for Arbitrary-Angle Single-Qubit Gates Using Error Amplification

    Full text link
    The ability to execute high-fidelity operations is crucial to scaling up quantum devices to large numbers of qubits. However, signal distortions originating from non-linear components in the control lines can limit the performance of single-qubit gates. In this work, we use a measurement based on error amplification to characterize and correct the small single-qubit rotation errors originating from the non-linear scaling of the qubit drive rate with the amplitude of the programmed pulse. With our hardware, and for a 15-ns pulse, the rotation angles deviate by up to several degrees from a linear model. Using purity benchmarking, we find that control errors reach 2×10−42\times 10^{-4}, which accounts for half of the total gate error. Using cross-entropy benchmarking, we demonstrate arbitrary-angle single-qubit gates with coherence-limited errors of 2×10−42\times 10^{-4} and leakage below 6×10−56\times 10^{-5}. While the exact magnitude of these errors is specific to our setup, the presented method is applicable to any source of non-linearity. Our work shows that the non-linearity of qubit drive line components imposes a limit on the fidelity of single-qubit gates, independent of improvements in coherence times, circuit design, or leakage mitigation when not corrected for

    Fast Flux-Activated Leakage Reduction for Superconducting Quantum Circuits

    Full text link
    Quantum computers will require quantum error correction to reach the low error rates necessary for solving problems that surpass the capabilities of conventional computers. One of the dominant errors limiting the performance of quantum error correction codes across multiple technology platforms is leakage out of the computational subspace arising from the multi-level structure of qubit implementations. Here, we present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation. This operation removes leakage down to our measurement accuracy of 7⋅10−47\cdot 10^{-4} in approximately 50 ns50\, \mathrm{ns} with a low error of 2.5(1)⋅10−32.5(1)\cdot 10^{-3} on the computational subspace, thereby reaching durations and fidelities comparable to those of single-qubit gates. We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion to close to what can be achieved using leakage-rejection methods which do not scale. Our approach does neither require additional control electronics nor on-chip components and is applicable to both auxiliary and data qubits. These benefits make our method particularly attractive for mitigating leakage in large-scale quantum error correction circuits, a crucial requirement for the practical implementation of fault-tolerant quantum computation

    Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit

    No full text
    Using full-wafer processing, we demonstrate a sophisticated nanotechnology for the realization of an ultrahigh sensitive cavity-coupled plasmonic device that combines the advantages of Fabry-Perot microcavities with those of metallic nanostructures. Coupling the plasmonic nanostructures to a Fabry-Perot microcavity creates compound modes, which have the characteristics of both Fabry-Perot and localized surface plasmon resonance (LSPR) modes, boosting the sensitivity and figure-of-merit of the structure. The significant trait of the proposed device is that the sample to be measured is located in the substrate region and is probed by the compound modes. It is demonstrated that the sensitivity of the compound modes is much higher than that of LSPR of plasmonic nanostructures or the pure Fabry-Perot modes of the optical microcavity. The response of the device is also investigated numerically and the agreement between measurements and calculations is excellent. The key features of the device introduced in this work are applicable for the realization of ultrahigh sensitive plasmonic devices for biosensing, optoelectronics, and related technologie

    Calibration of Drive Nonlinearity for Arbitrary-Angle Single-Qubit Gates Using Error Amplification

    No full text
    The ability to execute high-fidelity operations is crucial to scaling up quantum devices to large numbers of qubits. However, signal distortions originating from nonlinear components in the control lines can limit the performance of single-qubit gates. In this work, we use a measurement based on error amplification to characterize and correct the small single-qubit rotation errors originating from the nonlinear scaling of the qubit drive rate with the amplitude of the programmed pulse. With our hardware, and for a 15-ns pulse, the rotation angles deviate by up to several degrees from a linear model. Using purity benchmarking, we find that control errors reach 2×10-4, which accounts for half of the total gate error. Using cross-entropy benchmarking, we demonstrate arbitrary-angle single-qubit gates with coherence-limited errors of 2×10-4 and leakage below 6×10-5. While the exact magnitude of these errors is specific to our setup, the presented method is applicable to most sources of nonlinearity. Our work shows that the nonlinearity of qubit drive line components imposes a limit on the fidelity of single-qubit gates, independent of improvements in coherence times, circuit design, or leakage mitigation when not corrected for.ISSN:2331-701
    corecore