Abstract

Quantum computers will require quantum error correction to reach the low error rates necessary for solving problems that surpass the capabilities of conventional computers. One of the dominant errors limiting the performance of quantum error correction codes across multiple technology platforms is leakage out of the computational subspace arising from the multi-level structure of qubit implementations. Here, we present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation. This operation removes leakage down to our measurement accuracy of 7β‹…10βˆ’47\cdot 10^{-4} in approximately 50 ns50\, \mathrm{ns} with a low error of 2.5(1)β‹…10βˆ’32.5(1)\cdot 10^{-3} on the computational subspace, thereby reaching durations and fidelities comparable to those of single-qubit gates. We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion to close to what can be achieved using leakage-rejection methods which do not scale. Our approach does neither require additional control electronics nor on-chip components and is applicable to both auxiliary and data qubits. These benefits make our method particularly attractive for mitigating leakage in large-scale quantum error correction circuits, a crucial requirement for the practical implementation of fault-tolerant quantum computation

    Similar works

    Full text

    thumbnail-image

    Available Versions