885 research outputs found

    Gate-Compatible Circuit QED in a Three-Dimensional Cavity Architecture

    Full text link
    Semiconductor-based superconducting qubits offer a versatile platform for studying hybrid quantum devices in circuit quantum electrodynamics (cQED) architecture. Most of these cQED experiments utilize coplanar waveguides, where the incorporation of DC gate lines is straightforward. Here, we present a technique for probing gate-tunable hybrid devices using a three-dimensional (3D) microwave cavity. A recess is machined inside the cavity wall for the placement of devices and gate lines. We validate this design using a hybrid device based on an InAs-Al nanowire Josephson junction. The coupling between the device and the cavity is facilitated by a long superconducting strip, the antenna. The Josephson junction and the antenna together form a gatemon qubit. We further demonstrate the gate-tunable cavity shift and two-tone qubit spectroscopy. This technique could be used to probe various quantum devices and materials in a 3D cQED architecture that requires DC gate voltages

    Production globalization makes China’s exports cleaner

    Get PDF
    Production globalization, which is when firms expand their supply chains across national boundaries, creates an opportunity for developing countries to engage in international production networks via trade. Described as the world's factory, China specializes in assembly manufacturing mainly through processing exports. Firms use imported intermediate inputs for production and, after processing or assembly, re-export the finished products to international markets. Here, we show that the carbon efficiency of China's processing exports is greater than that of its ordinary exports. If the impact of trade heterogeneity is ignored, then the domestic emissions embodied in China's exports will be overestimated by 23.4%, and the foreign emissions embodied in China's exports will be underestimated by 29.3%. If the degree of global value chain participation, which ranges from 0 to 1, increases by 0.1, although foreign emissions embodied in China's exports would increase, the gross carbon intensity of China's exports will decrease by 11.7%

    Vitamin D Binding Protein Affects the Correlation of 25(OH)D and Frailty in the Older Men

    Get PDF
    Vitamin D binding protein (DBP) may alter the biologic activity of 25-hydroxyvitamin D [25(OH)D]. The objective of our present study was to determine the joint effect of serum 25(OH)D and DBP on the risk of frailty. Five hundred sixteen male participants aged 70 years or older were recruited in Changsha city and its surrounding area in Hunan province of China. Frailty was defined as the presence of at least three of the five following criteria: weakness, low physical activity, slow walking speed, exhaustion, and weight loss. Multivariate linear regression analysis was performed to assess the relationship between 25(OH)D and DBP levels. Odds ratios (ORs) for frailty were evaluated across quartiles of 25(OH)D and DBP levels, adjusted age, education, and body mass index. The results showed that participants in the lowest quartile of 25(OH)D and the highest quartile of DBP levels, the lowest quartile of 25(OH)D and the lowest quartile of DBP levels, and those in the the lower quartile of 25(OH)D and lowest quartile of DBP levels had significantly higher OR of being frail compared with those in the highest quartile of 25(OH)D and lowest quartile of DBP, with OR of 3.18 (95% CI: 1.46–4.56, P<0.05), 2.63 (95% CI: 1.31–3.68, P<0.01), and 2.52 (95% CI: 1.22–3.52, P<0.05), respectively. The results indicate that the joint effect of serum 25(OH)D and DBP levels is associated with the risk of frailty, and serum DBP levels affects 25(OH)D-frailty relationship in the older men

    Pairing symmetry and properties of iron-based high temperature superconductors

    Full text link
    Pairing symmetry is important to indentify the pairing mechanism. The analysis becomes particularly timely and important for the newly discovered iron-based multi-orbital superconductors. From group theory point of view we classified all pairing matrices (in the orbital space) that carry irreducible representations of the system. The quasiparticle gap falls into three categories: full, nodal and gapless. The nodal-gap states show conventional Volovik effect even for on-site pairing. The gapless states are odd in orbital space, have a negative superfluid density and are therefore unstable. In connection to experiments we proposed possible pairing states and implications for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio

    DCAF13 promotes breast cancer cell proliferation by ubiquitin inhibiting PERP expression

    Get PDF
    Evolutionarily conserved DDB1-and CUL4-associated factor 13 (DCAF13) is a recently discovered substrate receptor for the cullin RING-finger ubiquitin ligase 4 (CRL4) E3 ubiquitin ligase that regulates cell cycle progression. DCAF13 is overexpressed in many cancers, although its role in breast cancer is currently elusive. In this study we demonstrate that DCAF13 is overexpressed in human breast cancer and that its overexpression closely correlates with poor prognosis, suggesting that DCAF13 may serve as a diagnostic marker and therapeutic target. We knocked down DCAF13 in breast cancer cell lines using CRISPR/Cas9 and found that DCAF13 deletion markedly reduced breast cancer cell proliferation, clone formation, and migration both in vitro and in vivo. In addition, DCAF13 deletion promoted breast cancer cell apoptosis and senescence, and induced cell cycle arrest in the G1/S phase. Genome-wide RNAseq analysis and western blotting revealed that loss of DCAF13 resulted in both mRNA and protein accumulation of p53 apoptosis effector related to PMP22 (PERP). Knockdown of PERP partially reversed the hampered cell proliferation induced by DCAF13 knockdown. Co-immunoprecipitation assays revealed that DCAF13 and DNA damage-binding protein 1 (DDB1) directly interact with PERP. Overexpression of DDB1 significantly increased PERP polyubiquitination, suggesting that CRL4DCAF13 E3 ligase targets PERP for ubiquitination and proteasomal degradation. In conclusion, DCAF13 and the downstream effector PERP occupy key roles in breast cancer proliferation and potentially serve as prognostics and therapeutic targets

    A Strategy for the Proliferation of Ulva prolifera, Main Causative Species of Green Tides, with Formation of Sporangia by Fragmentation

    Get PDF
    Ulva prolifera, a common green seaweed, is one of the causative species of green tides that occurred frequently along the shores of Qingdao in 2008 and had detrimental effects on the preparations for the 2008 Beijing Olympic Games sailing competition, since more than 30 percent of the area of the games was invaded. In view of the rapid accumulation of the vast biomass of floating U. prolifera in green tides, we investigated the formation of sporangia in disks of different diameters excised from U. prolifera, changes of the photosynthetic properties of cells during sporangia formation, and development of spores. The results suggested that disks less than 1.00 mm in diameter were optimal for the formation of sporangia, but there was a small amount of spore release in these. The highest percentage of area of spore release occurred in disks that were 2.50 mm in diameter. In contrast, sporangia were formed only at the cut edges of larger disks (3.00 mm, 3.50 mm, and 4.00 mm in diameter). Additionally, the majority of spores liberated from the disks appeared vigorous and developed successfully into new individuals. These results implied that fragments of the appropriate size from the U. prolifera thalli broken by a variety of factors via producing spores gave rise to the rapid proliferation of the seaweed under field conditions, which may be one of the most important factors to the rapid accumulation of the vast biomass of U. prolifera in the green tide that occurred in Qingdao, 2008

    Genome-Wide Association Study Identifies ALDH7A1 as a Novel Susceptibility Gene for Osteoporosis

    Get PDF
    Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis

    Dynamic Responses of Tree-Ring Growth to Multiple Dimensions of Drought

    Full text link
    Droughts, which are characterized by multiple dimensions including frequency, duration, severity and onset timing, can impact tree growth profoundly. Different dimensions of drought influence tree growth independently or jointly, which makes the development of accurate predictions a formidable challenge. Measurement-based tree-ring data have obvious advantages for studying the drought responses of trees. Here, we explored the use of abundant tree-ring records for quantifying regional response patterns to key dimensions of drought. Specifically, we designed a series of regional-scaled “natural experiments”, based on 357 tree-ring chronologies from Southwest USA and location-matched monthly water balance anomalies, to reveal how tree-ring growth responds to each dimension of drought. Our results showed that tree-ring growth was affected significantly more by the water balance condition in the current hydrological year than that in the prior hydrological year. Within the current hydrological year, increased drought frequency (number of dry months) and duration (maximum number of consecutive dry months) resulted in “cumulative effects” which amplified the impacts of drought on trees and reduced the drought resistance of trees. Drought events that occurred in the pre-growing seasons strongly affected subsequent tree growth. Both the onset timing and severity of drought increased “legacy effects” on tree growth, which reduced the drought resilience of trees. These results indicated that the drought impact on trees is a dynamic process: even when the total water deficits are the same, differences among the drought processes could lead to considerably different responses from trees. This study thus provides a conceptual framework and probabilistic patterns of tree-ring growth response to multiple dimensions of drought regimes, which in turn may have a wide range of implications for predictions, uncertainty assessment and forest management

    Search for the decay J/ψγ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)π+πJ/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×107\times 10^{-7} at the 90\% confidence level
    corecore