7 research outputs found

    A compendium of genetic regulatory effects across pig tissues

    Get PDF
    The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.</p

    A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidation of the pig transcriptome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits such as fat deposition, metabolism and growth.</p> <p>Results</p> <p>Here we used massive parallel high-throughput RNA sequencing to generate a high-resolution map of the porcine mRNA and miRNA transcriptome in liver, longissimus dorsi and abdominal fat from two full-sib F<sub>2 </sub>hybrid pigs with segregated phenotypes on growth, blood physiological and biochemical parameters, and fat deposition. We obtained 8,508,418-10,219,332 uniquely mapped reads that covered 78.0% of the current annotated transcripts and identified 48,045-122,931 novel transcript fragments, which constituted 17,085-29,499 novel transcriptional active regions in six tested samples. We found that about 18.8% of the annotated genes showed alternative splicing patterns, and alternative 3' splicing is the most common type of alternative splicing events in pigs. Cross-tissue comparison revealed that many transcriptional events are tissue-differential and related to important biological functions in their corresponding tissues. We also detected a total of 164 potential novel miRNAs, most of which were tissue-specifically identified. Integrated analysis of genome-wide association study and differential gene expression revealed interesting candidate genes for complex traits, such as <it>IGF2, CYP1A1, CKM </it>and <it>CES1 </it>for heart weight, hemoglobin, pork pH value and serum cholesterol, respectively.</p> <p>Conclusions</p> <p>This study provides a global view of the complexity of the pig transcriptome, and gives an extensive new knowledge about alternative splicing, gene boundaries and miRNAs in pigs. Integrated analysis of genome wide association study and differential gene expression allows us to find important candidate genes for porcine complex traits.</p

    Cassava genome from a wild ancestor to cultivated varieties

    Get PDF
    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology

    PigBiobank: a valuable resource for understanding genetic and biological mechanisms of diverse complex traits in pigs

    Get PDF
    © The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] fully unlock the potential of pigs as both agricultural species for animal-based protein food and biomedical models for human biology and disease, a comprehensive understanding of molecular and cellular mechanisms underlying various complex phenotypes in pigs and how the findings can be translated to other species, especially humans, are urgently needed. Here, within the Farm animal Genotype-Tissue Expression (FarmGTEx) project, we build the PigBiobank (http://pigbiobank.farmgtex.org) to systematically investigate the relationships among genomic variants, regulatory elements, genes, molecular networks, tissues and complex traits in pigs. This first version of the PigBiobank curates 71 885 pigs with both genotypes and phenotypes from over 100 pig breeds worldwide, covering 264 distinct complex traits. The PigBiobank has the following functions: (i) imputed sequence-based genotype-phenotype associations via a standardized and uniform pipeline, (ii) molecular and cellular mechanisms underlying trait-associations via integrating multi-omics data, (iii) cross-species gene mapping of complex traits via transcriptome-wide association studies, and (iv) high-quality results display and visualization. The PigBiobank will be updated timely with the development of the FarmGTEx-PigGTEx project, serving as an open-access and easy-to-use resource for genetically and biologically dissecting complex traits in pigs and translating the findings to other species.National Natural Science Foundation of China [32022078]; National Key R&D Program of China [2022YFF1000900]; Local Innovative and Research Teams Project of Guangdong Province [2019BT02N630]; China Agriculture Research System [CARS-35]. Funding for open access charge: National Natural Science Foundation of China [32022078].Peer reviewe

    Electric degradation in PZT piezoelectric ceramics under a DC bias

    No full text
    In order to accurately evaluate the service life and failure mechanism of the PZT piezoelectric ceramics, the electric degradation process of the PZT ceramics with and sans doping under a DC voltage of 380V, in a surrounding environment of 90∘C and 85% RH has been investigated using a self-made device. The experimental results show that the degradation rate of the pure PZT ceramic is lower than that of ceramics with doping in the same condition. Furthermore, the electrical properties of the ceramics tend to decrease during the electric degradation. The doping increases the defects of ceramics, resulting in that the silver ion transfer from the anode to the cathode under the continuous DC bias, which can further form a metal band, increasing the conductivity, but deteriorating the service life

    A compendium of genetic regulatory effects across pig tissues

    Get PDF
    Altres ajuts: Medical Research Council (MRC) MR/R025851/1 i MR/P015514/1. Biotechnology and Biological Sciences Research Council BBS/E/D/10002070 i BBS/E/D/30002275. United States Department of Agriculture 2019-67015-29321 i 2021-67015-33409. National Natural Science Foundation of China (National Science Foundation of China) 32022078.The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model. The pilot phase of PigGTEx, re-analyzing 5,457 published RNA-seq samples, presents a pan-tissue catalog of molecular quantitative trait loci. Cross-species comparisons identify traits with shared genetic regulation in humans
    corecore