41,322 research outputs found
A New Young Diagrammatic Method For Kronecker Products of O(n) and Sp(2m)
A new simple Young diagrammatic method for Kronecker products of O(n) and
Sp(2m) is proposed based on representation theory of Brauer algebras. A general
procedure for the decomposition of tensor products of representations for O(n)
and Sp(2m) is outlined, which is similar to that for U(n) known as the
Littlewood rules together with trace contractions from a Brauer algebra and
some modification rules given by King.Comment: Latex, 11 pages, no figure
Current Path Properties of the Transport Anisotropy at Filling Factor 9/2
To establish the presence and orientation of the proposed striped phase in
ultra-high mobility 2D electron systems at filling factor 9/2, current path
transport properties are determined by varying the separation and allignment of
current and voltage contacts. Contacts alligned orthogonal to the proposed
intrinsic striped phase produce voltages consistent with current spreading
along the stripes; current driven along the proposed stripe direction results
in voltages consistent with channeling along the stripes. Direct comparison is
made to current spreading/channeling properties of artificially induced 1D
charge modulated systems, which indicates the 9/2 direction.Comment: 10 pages, 4 figure
Josephson Effect in Pb/I/NbSe2 Scanning Tunneling Microscope Junctions
We have developed a method for the reproducible fabrication of
superconducting scanning tunneling microscope (STM) tips. We use these tips to
form superconductor/insulator/superconductor tunnel junctions with the STM tip
as one of the electrodes. We show that such junctions exhibit fluctuation
dominated Josephson effects, and describe how the Josephson product IcRn can be
inferred from the junctions' tunneling characteristics in this regime. This is
first demonstrated for tunneling into Pb films, and then applied in studies of
single crystals of NbSe2. We find that in NbSe2, IcRn is lower than expected,
which could be attributed to the interplay between superconductivity and the
coexisting charge density wave in this material.Comment: 3 pages, 2 figures. Presented at the New3SC-4 meeting, San Diego,
Jan. 16-21 200
On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs
The purpose of this paper is to study the problem of generalizing the
Belavkin-Kalman filter to the case where the classical measurement signal is
replaced by a fully quantum non-commutative output signal. We formulate a least
mean squares estimation problem that involves a non-commutative system as the
filter processing the non-commutative output signal. We solve this estimation
problem within the framework of non-commutative probability. Also, we find the
necessary and sufficient conditions which make these non-commutative estimators
physically realizable. These conditions are restrictive in practice.Comment: 31 page
Analysis, design, and prototype development of squeeze-film bearings for AB-5 gyro Final report phase 2, design, fabrication and evaluation of prototypes
Squeeze-film bearing transducers with piezoceramic cylinders for AB-5 gyro - design, fabrication, and testing of cylindrical journal and annular bearing prototype
Josephson scanning tunneling microscopy
We propose a set of scanning tunneling microscopy experiments in which the
surface of superconductor is scanned by a superconducting tip. Potential
capabilities of such experimental setup are discussed. Most important
anticipated results of such an experiment include the position-resolved
measurement of the superconducting order parameter and the possibility to
determine the nature of the secondary component of the order parameter at the
surface. The theoretical description based on the tunneling Hamiltonian
formalism is presented.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Interpolation Approach to Hamiltonian-varying Quantum Systems and the Adiabatic Theorem
Quantum control could be implemented by varying the system Hamiltonian.
According to adiabatic theorem, a slowly changing Hamiltonian can approximately
keep the system at the ground state during the evolution if the initial state
is a ground state. In this paper we consider this process as an interpolation
between the initial and final Hamiltonians. We use the mean value of a single
operator to measure the distance between the final state and the ideal ground
state. This measure could be taken as the error of adiabatic approximation. We
prove under certain conditions, this error can be precisely estimated for an
arbitrarily given interpolating function. This error estimation could be used
as guideline to induce adiabatic evolution. According to our calculation, the
adiabatic approximation error is not proportional to the average speed of the
variation of the system Hamiltonian and the inverse of the energy gaps in many
cases. In particular, we apply this analysis to an example on which the
applicability of the adiabatic theorem is questionable.Comment: 12 pages, to appear in EPJ Quantum Technolog
Integer quantum Hall effect on a six valley hydrogen-passivated silicon (111) surface
We report magneto-transport studies of a two-dimensional electron system
formed in an inversion layer at the interface between a hydrogen-passivated
Si(111) surface and vacuum. Measurements in the integer quantum Hall regime
demonstrate the expected sixfold valley degeneracy for these surfaces is
broken, resulting in an unequal occupation of the six valleys and anisotropy in
the resistance. We hypothesize the misorientation of Si surface breaks the
valley states into three unequally spaced pairs, but the observation of odd
filling factors, is difficult to reconcile with non-interacting electron
theory.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the BiSe Topological Insulator
Dirac-like surface states on surfaces of topological insulators have a chiral
spin structure that suppresses back-scattering and protects the coherence of
these states in the presence of non-magnetic scatterers. In contrast, magnetic
scatterers should open the back- scattering channel via the spin-flip processes
and degrade the state's coherence. We present angle-resolved photoemission
spectroscopy studies of the electronic structure and the scattering rates upon
adsorption of various magnetic and non-magnetic impurities on the surface of
BiSe, a model topological insulator. We reveal a remarkable
insensitivity of the topological surface state to both non-magnetic and
magnetic impurities in the low impurity concentration regime. Scattering
channels open up with the emergence of hexagonal warping in the high-doping
regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure
- …