33,553 research outputs found

    Convergence of the largest eigenvalue of normalized sample covariance matrices when p and n both tend to infinity with their ratio converging to zero

    Full text link
    Let Xp=(s1,...,sn)=(Xij)p×n\mathbf{X}_p=(\mathbf{s}_1,...,\mathbf{s}_n)=(X_{ij})_{p \times n} where XijX_{ij}'s are independent and identically distributed (i.i.d.) random variables with EX11=0,EX112=1EX_{11}=0,EX_{11}^2=1 and EX114<∞EX_{11}^4<\infty. It is showed that the largest eigenvalue of the random matrix Ap=12np(XpXp′−nIp)\mathbf{A}_p=\frac{1}{2\sqrt{np}}(\mathbf{X}_p\mathbf{X}_p^{\prime}-n\mathbf{I}_p) tends to 1 almost surely as p→∞,n→∞p\rightarrow\infty,n\rightarrow\infty with p/n→0p/n\rightarrow0.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ381 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    In-situ electrochemical fabrication of natural contacts on single nanowires

    Full text link
    We report a template-based in-situ electrochemical method for fabricating natural electric contacts on single nanowires using a pair of cross-patterned electrodes. Such electric contacts are highly stable upon thermal cycling between room temperature and milli-Kelvin temperatures. Direct imaging of the single-nanowire contacts using scanning electron microscopy is also demonstrated.Comment: 13 pages, 4 figure

    Application of Information Theory in Nuclear Liquid Gas Phase Transition

    Full text link
    Information entropy and Zipf's law in the field of information theory have been used for studying the disassembly of nuclei in the framework of the isospin dependent lattice gas model and molecular dynamical model. We found that the information entropy in the event space is maximum at the phase transition point and the mass of the cluster show exactly inversely to its rank, i.e. Zipf's law appears. Both novel criteria are useful in searching the nuclear liquid gas phase transition experimentally and theoretically.Comment: 5 pages, 5 figure

    On the Reconstructed Fermi Surface in the Underdoped Cuprates

    Get PDF
    The Fermi surface topologies of underdoped samples the high-Tc superconductor Bi2212 have been measured with angle resolved photoemission. By examining thermally excited states above the Fermi level, we show that the Fermi surfaces in the pseudogap phase of underdoped samples are actually composed of fully enclosed hole pockets. The spectral weight of these pockets is vanishingly small at the anti-ferromagnetic zone boundary, which creates the illusion of Fermi "arcs" in standard photoemission measurements. The area of the pockets as measured in this study is consistent with the doping level, and hence carrier density, of the samples measured. Furthermore, the shape and area of the pockets is well reproduced by a phenomenological model of the pseudogap phase as a spin liquid.Comment: 4 pages, 4 figures. Submitted to Physics Review Letter
    • …
    corecore