32 research outputs found

    THE EFFECT OF TRUST ON INFORMATION DIFFUSION IN ONLINE SOCIAL NETWORKS

    Get PDF
    online social networks have a explosive growth in recent years and they provide a perfect platform for information diffusion. Many models have been given to explore the information diffusion procedure and its dynamics. But the trust relationship and memory effect are ignored. Based on the complex network theory, The information diffusion model is proposed and the network users, considered as agents, are classified into susceptible, infected and recovered individuals. The users’ behaviour rule and diffusion process are designed. The proposed agent-based model is tested by simulation experiments in four different complex networks: regular network, small world network, random network and scale-free network. Moreover, the effect of four immunization strategies are explored. The research results show that the influence of users’ trust relationship on different networks is varied, and the vertex weight priority immunization strategy is the best one in all four networks

    ICESsuHN105, a Novel Multiple Antibiotic Resistant ICE in Streptococcus suis Serotype 5 Strain HN105

    Get PDF
    Streptococcussuis serotype 5, an emerging zoonosis bacterial pathogen, has been isolated from infections in both pigs and humans. In this study, we sequenced the first complete genome of a virulent, multidrug-resistant SS5 strain HN105. The strain HN105 displayed enhanced pathogenicity in zebrafish and BABL/c mouse infection models. Comparative genome analysis identified a novel 80K integrative conjugative element (ICE), ICESsuHN105, as required for the multidrug resistance phenotype. Six corresponding antibiotic resistance genes in this ICE were identified, namely tet (O), tet (M), erm (two copies), aph, and spc. Phylogenetic analysis classified the element as a homolog of the ICESa2603 family, containing the typical family backbone and insertion DNA. DNA hybrids mediated by natural transformation between HN105 and ZY05719 verified the antibiotic resistant genes of ICESsuHN105 that could be transferred successfully, while they were dispersedly inserted with a single gene in different genomic locations of ZY05719(HN105) transformants. To further identify the horizontal transfer of ICESsuHN105 as a whole mobile genetic element, a circular intermediate form of ICESsuHN105 was detected by PCR. However, the effective conjugation using serotype 2 S. suis as recipients was not observed in current assays in vitro. Further studies confirmed the presence of the complete lantibiotic locus encoded in ICESsuHN105 that effectively inhibits the growth of other streptococci. In summary, this study demonstrated the presence of antibiotic resistance genes in ICE that are able to transfer between different clinical isolates and adapt to a broader range of Streptococcus serotype or species

    A novel non‑selective atypical PKC agonist could protect neuronal cell line from A β ‑oligomer induced toxicity by suppressing A β generation

    Full text link
    Atypical protein kinase C (aPKCs) serve key functions in embryonic development by regulating apical-basal polarity. Previous studies have shed light on their roles during adulthood, especially in the development of Alzheimer\u27s disease (AD). Although the crystal structure of PKCι has been resolved, an agonist of aPKCs remains to be discovered. In the present study, by using the Discovery Studio program and LibDock methodology, a small molecule library (K66-X4436 KINA Set) of compounds were screened for potential binding to PKCι. Subsequently, the computational docking results were validated using affinity selection-mass spectrometry, before in vitro kinase activity was used to determine the function of the hit compounds. A cell-based model assay that can mimic the pathology of AD was then established and used to assess the function of these hit compounds. As a result, the aPKC agonist Z640 was identified, which could bind to PKCι in silico, in vitro and in this cell-based model. Z640 was further confirmed as a non-selective aPKC agonist that can activate the kinase activity of both PKCι and PKCζ. In the cell-based assay, Z640 was found to protect neuronal cell lines from amyloid-β (Aβ) oligomer-induced cell death by reducing reactive oxygen species production and restore mitochondrial function. In addition, Z640 could reduce Aβ40 generation in a dose-dependent manner and shift amyloid precursor protein processing towards the non-amyloid pathway. To conclude, the present study is the first, to the best of the authors\u27 knowledge to identify an aPKC agonist by combining computer-assisted drug discovery and cell-based assays. The present study also revealed that aPKC agonists have therapeutic potential for the treatment of AD

    Solution-Printed Organic Semiconductor Blends Exhibiting Transport Properties on Par with Single Crystals

    Get PDF
    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2V−1s−1, low threshold voltages of \u3c1V and low sub threshold swings \u3c0.5Vdec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts

    20(S)-Protopanaxadiol Inhibits Titanium Particle-Induced Inflammatory Osteolysis and RANKL-Mediated Osteoclastogenesis via MAPK and NF-κB Signaling Pathways

    Get PDF
    Osteolysis is a principal reason for arthroplasty failure like aseptic loosening induced by Titanium (Ti) particle. It is a challenge for orthopedic surgeons. Recent researches show that 20(S)-protopanaxadiol can inhibit inflammatory cytokine release in vitro. This study aims to assess the effect of 20(S)-protopanaxadiol on Ti particle-induced osteolysis and RANKL-mediated osteoclastogenesis. Micro-CT and histological analysis in vivo indicated the inhibitory effects of 20(S)-protopanaxadiol on osteoclastogenesis and the excretion of inflammatory cytokines. Next, we demonstrated that 20(S)-protopanaxadiol inhibited osteoclast differentiation, bone resorption area, and F-actin ring formation in a dose-dependent manner. Moreover, mechanistic studies suggested that the suppression of MAPK and NF-κB signaling pathways were found to mediate the inhibitory effects of 20(S)-protopanaxadiol. In conclusion, 20(S)-protopanaxadiol may suppress osteoclastogenesis in a dose- dependent manner and it could be a potential treatment of Ti particle-induced osteolysis

    Chirurgie endovasculaire virtuelle : Application à la dissection aortique

    No full text
    Les maladies cardiovasculaires sont la principale cause de mortalité dans le monde. Parmi ces maladies, la dissection aortique constitue une pathologie méconnue et difficile à traiter, avec un taux de survie, pour les cas les plus graves ne dépassant pas les 10%. Cette pathologie survient dans l’aorte et se caractérise par l’irruption de sang à l’intérieur de la paroi de l’aorte. Elle correspond à une déchirure localisée des couches internes de la paroi aortique, appelée porte d'entrée, par laquelle le sang sous pression pénètre et décolle les différentes couches qui constituent la paroi de l'aorte. Le traitement endovasculaire vise à obturer la fausse lumière à l'aide d'un stent. Les outils actuels de la chirurgie endovasculaire reposent uniquement sur les techniques d'imagerie médicale. Comme les images sont prises avant l'intervention, elles ne tiennent pas compte de la déformation de la structure vasculaire par la prothèse. Les phénomènes de flux sanguin postopératoire dans le traitement endovasculaire des dissections aortiques sont rares. L'hémodynamique du sang dans l'aorte après une intervention est critique car le déploiement du stent modifie le flux sanguin. Cette thèse a pour but de présenter un outil numérique, issu du logiciel open-source FOAM-Extend®, permettant des simulations numériques multiphysiques réalisant le couplage fluide-structure entre l'hémodynamique et la déformation artérielle pour aider au processus de planification. En outre, à l'aide du logiciel Abaqus, nous réalisons le placement des outils chirurgicaux dans un AD "bio-fidèle" modèle. Cela permettra de prédire la déformation du lambeau et de la paroi de l'artère lors de la mise en place des outils. Et aussi, avec la simulation numérique, nous pourrons réaliser l'hémodynamique dans l'aorte du postopératoire pour prédire la modification du flux. Enfin, les résultats de la simulation numérique sont comparés aux données de l'IRM pour avoir une validation des modèles numériques.Cardiovascular diseases (CVDs) are the leading cause of mortality in the European Union and accounted for about 36% of all deaths in 2019. Among these diseases, aortic dissection is relatively unknown and difficult to treat, with a survival rate for most severe cases not exceeding 10%. This pathology occurs when an injury leads to a localized tear of the innermost layer of the aorta, called the entry port. It allows blood to flow between the layers of the aortic wall, forcing the layers apart and creating a false lumen. The dissection of these layers may extend over a long portion of the thoracic and abdominal aorta. Endovascular treatment seeks to obliterate the entrances to the false lumen with a stent. The currently available surgical tools for endovascular procedures are selected only from information based on medical imaging techniques. The images are carried out before the intervention and therefore do not consider the deformation of the vascular structure by the implementation of the prosthesis. While many biomechanical studies have been done on the endovascular treatment of aneurysms of the abdominal aorta, there are, however, very few studies on aortic dissections. However,there are few studies as well on the postoperative demonstration of blood flow phenomena in the aortic dissection endovascular treatment. It is crucial to study the hemodynamic of blood in the aorta after an intervention, because the deployment of a stent leads to modifications in the blood flow. For the surgeons, the procedure can only be performed empirically, using MRI-4D images to view the post-operative flow of the patient's blood in the aorta with the stent. The numerical simulation method, instead allows us to simulate the complete endovascular procedure for an adapted recommendation during surgical planning. This thesis aims to present a numerical tool, from the open-source software FOAM-Extend, allowing for Multiphysics numerical simulations, performing the fluid-structure coupling between the hemodynamics and the arterial deformation to assist in the planning process. In addition, using Abaqus software, we realized the placement of the surgical tools in a “biomechano-faithful” aortic dissection model. This model will be able to predict the deformation of the flap and the artery wall during the implementation of the tools. Also, with the numerical simulation, we could obtain the postoperative hemodynamic in the aorta, to predict the modification of flow. Finally, the numerical simulation results are compared with the MRI data to have a validation of the numerical models. There is a parallel thesis that focuses on flows in aorta phantoms PIV applied in AD (same geometry) and enables the confrontation and inter-validation of both model methods at the time of the study

    Chirurgie endovasculaire virtuelle : Application à la dissection aortique

    No full text
    Cardiovascular diseases (CVDs) are the leading cause of mortality in the European Union and accounted for about 36% of all deaths in 2019. Among these diseases, aortic dissection is relatively unknown and difficult to treat, with a survival rate for most severe cases not exceeding 10%. This pathology occurs when an injury leads to a localized tear of the innermost layer of the aorta, called the entry port. It allows blood to flow between the layers of the aortic wall, forcing the layers apart and creating a false lumen. The dissection of these layers may extend over a long portion of the thoracic and abdominal aorta. Endovascular treatment seeks to obliterate the entrances to the false lumen with a stent. The currently available surgical tools for endovascular procedures are selected only from information based on medical imaging techniques. The images are carried out before the intervention and therefore do not consider the deformation of the vascular structure by the implementation of the prosthesis. While many biomechanical studies have been done on the endovascular treatment of aneurysms of the abdominal aorta, there are, however, very few studies on aortic dissections. However,there are few studies as well on the postoperative demonstration of blood flow phenomena in the aortic dissection endovascular treatment. It is crucial to study the hemodynamic of blood in the aorta after an intervention, because the deployment of a stent leads to modifications in the blood flow. For the surgeons, the procedure can only be performed empirically, using MRI-4D images to view the post-operative flow of the patient's blood in the aorta with the stent. The numerical simulation method, instead allows us to simulate the complete endovascular procedure for an adapted recommendation during surgical planning. This thesis aims to present a numerical tool, from the open-source software FOAM-Extend, allowing for Multiphysics numerical simulations, performing the fluid-structure coupling between the hemodynamics and the arterial deformation to assist in the planning process. In addition, using Abaqus software, we realized the placement of the surgical tools in a “biomechano-faithful” aortic dissection model. This model will be able to predict the deformation of the flap and the artery wall during the implementation of the tools. Also, with the numerical simulation, we could obtain the postoperative hemodynamic in the aorta, to predict the modification of flow. Finally, the numerical simulation results are compared with the MRI data to have a validation of the numerical models. There is a parallel thesis that focuses on flows in aorta phantoms PIV applied in AD (same geometry) and enables the confrontation and inter-validation of both model methods at the time of the study.Les maladies cardiovasculaires sont la principale cause de mortalité dans le monde. Parmi ces maladies, la dissection aortique constitue une pathologie méconnue et difficile à traiter, avec un taux de survie, pour les cas les plus graves ne dépassant pas les 10%. Cette pathologie survient dans l’aorte et se caractérise par l’irruption de sang à l’intérieur de la paroi de l’aorte. Elle correspond à une déchirure localisée des couches internes de la paroi aortique, appelée porte d'entrée, par laquelle le sang sous pression pénètre et décolle les différentes couches qui constituent la paroi de l'aorte. Le traitement endovasculaire vise à obturer la fausse lumière à l'aide d'un stent. Les outils actuels de la chirurgie endovasculaire reposent uniquement sur les techniques d'imagerie médicale. Comme les images sont prises avant l'intervention, elles ne tiennent pas compte de la déformation de la structure vasculaire par la prothèse. Les phénomènes de flux sanguin postopératoire dans le traitement endovasculaire des dissections aortiques sont rares. L'hémodynamique du sang dans l'aorte après une intervention est critique car le déploiement du stent modifie le flux sanguin. Cette thèse a pour but de présenter un outil numérique, issu du logiciel open-source FOAM-Extend®, permettant des simulations numériques multiphysiques réalisant le couplage fluide-structure entre l'hémodynamique et la déformation artérielle pour aider au processus de planification. En outre, à l'aide du logiciel Abaqus, nous réalisons le placement des outils chirurgicaux dans un AD "bio-fidèle" modèle. Cela permettra de prédire la déformation du lambeau et de la paroi de l'artère lors de la mise en place des outils. Et aussi, avec la simulation numérique, nous pourrons réaliser l'hémodynamique dans l'aorte du postopératoire pour prédire la modification du flux. Enfin, les résultats de la simulation numérique sont comparés aux données de l'IRM pour avoir une validation des modèles numériques

    COMPUTER AIDED SURGERY: APPLICATION TO AORTIC DISSECTION

    No full text
    International audienceCardiovascular diseases are the leading cause of mortality in the industrialized world. Among these diseases, aortic dissection is relatively unknown and difficult to treat, with a survival rate for most severe cases not exceeding 10%. This pathology occurs when an injury leads to a localized tear of the innermost layer of the aorta
    corecore