1,325 research outputs found

    The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release

    Get PDF
    <p>Objectives: Macrophages are central to the inflammatory processes driving rheumatoid arthritis (RA) synovitis. The molecular pathways that are induced in synovial macrophages and thereby promote RA disease pathology remain poorly understood.</p> <p>Methods: We used microarray to characterise the transcriptome of synovial fluid (SF) macrophages compared with matched peripheral blood monocytes from patients with RA (n=8).</p> <p>Results: Using in silico pathway mapping, we found that pathways downstream of the cholesterol activated liver X receptors (LXRs) and those associated with Toll-like receptor (TLR) signalling were upregulated in SF macrophages. Macrophage differentiation and tumour necrosis factor α promoted the expression of LXRα. Furthermore, in functional studies we demonstrated that activation of LXRs significantly augmented TLR-driven cytokine and chemokine secretion.</p> <p>Conclusions: The LXR pathway is the most upregulated pathway in RA synovial macrophages and activation of LXRs by ligands present within SF augments TLR-driven cytokine secretion. Since the natural agonists of LXRs arise from cholesterol metabolism, this provides a novel mechanism that can promote RA synovitis.</p&gt

    The 'alternative' EMT switch

    Get PDF
    Epithelial to mesenchymal transition (EMT) is an essential process in embryonic development and is aberrantly induced in many disease settings. Work carried out by Chonghui Cheng's laboratory addressed the involvement of alternative RNA splicing in EMT and its link to tumour progression. They describe a switch in CD44 expression from variant isoform(s) to the standard isoform and showed, for the first time, that this is required for normal epithelial cells to undergo EMT. In addition, they link expression of the CD44 standard isoform with high-grade breast cancer and to activation of the phosphoinositide 3-kinase/Akt pathway and apoptosis resistance in a mouse model of recurrent disease

    Discovery of diverse and functional antibodies from large human repertoire antibody libraries

    Get PDF
    AbstractPhage display antibody libraries have a proven track record for the discovery of therapeutic human antibodies, increasing the demand for large and diverse phage antibody libraries for the discovery of new therapeutics. We have constructed naïve antibody phage display libraries in both Fab and scFv formats, with each library having more than 250billion clones that encompass the human antibody repertoire. These libraries show high fidelity in open reading frame and expression percentages, and their V-gene family distribution, VH-CDR3 length and amino acid usage mirror the natural diversity of human antibodies. Both the Fab and scFv libraries show robust sequence diversity in target-specific binders and differential V-gene usage for each target tested, supporting the use of libraries that utilize multiple display formats and V-gene utilization to maximize antibody-binding diversity. For each of the targets, clones with picomolar affinities were identified from at least one of the libraries and for the two targets assessed for activity, functional antibodies were identified from both libraries

    Preconditioning Involves Selective Mitophagy Mediated by Parkin and p62/SQSTM1

    Get PDF
    Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia (sI) in vitro and IPC of hearts to investigate the role of Parkin in mediating cardioprotection ex vivo and in vivo. In HL-1 cells, sI induced Parkin translocation to mitochondria and mitochondrial elimination. IPC induced Parkin translocation to mitochondria in Langendorff-perfused rat hearts and in vivo in mice subjected to regional IPC. Mitochondrial depolarization with an uncoupling agent similarly induced Parkin translocation to mitochondria in cells and Langendorff-perfused rat hearts. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports indicating a role for p62/SQSTM1 in mitophagy, we found that depletion of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to sI. While wild type mice showed p62 translocation to mitochondria and an increase in ubiquitination, Parkin knockout mice exhibited attenuated IPC-induced p62 translocation to the mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection

    Genetic predictors of risk and resilience in psychiatric disorders: A cross-disorder genome-wide association study of functional impairment in major depressive disorder, bipolar disorder, and schizophrenia

    Get PDF
    Functional impairment is one of the most enduring, intractable consequences of psychiatric disorders and is both familial and heritable. Previous studies have suggested that variation in functional impairment can be independent of symptom severity. Here we report the first genome-wide association study (GWAS) of functional impairment in the context of major mental illness. Participants of European-American descent (N=2,246) were included from three large treatment studies of bipolar disorder (STEP-BD) (N=765), major depressive disorder (STAR*D) (N=1091), and schizophrenia (CATIE) (N=390). At study entry, participants completed the SF-12, a widely-used measure of health-related quality of life. We performed a GWAS and pathway analysis of the mental and physical components of health-related quality of life across diagnosis (~1.6 million single nucleotide polymorphisms), adjusting for psychiatric symptom severity. Psychiatric symptom severity was a significant predictor of functional impairment, but it accounted for less than one-third of the variance across disorders. After controlling for diagnostic category and symptom severity, the strongest evidence of genetic association was between variants in ADAMTS16 and physical functioning (p=5.87 × 10−8). Pathway analysis did not indicate significant enrichment after correction for gene clustering and multiple testing. This study illustrates a phenotypic framework for examining genetic contributions to functional impairment across psychiatric disorders

    Cross-Disorder Genomewide Analysis of Schizophrenia, Bipolar Disorder, and Depression

    Get PDF
    Family and twin studies indicate substantial overlap of genetic influences on psychotic and mood disorders. Linkage and candidate gene studies have also suggested overlap across schizophrenia (SCZ), bipolar disorder (BPD), and major depressive disorder (MDD). The objective of this study was to apply genomewide association study (GWAS) analysis to address the specificity of genetic effects on these disorders

    NLRP1-Dependent Pyroptosis Leads to Acute Lung Injury and Morbidity in Mice

    Get PDF
    Acute inflammation in response to both exogenous and endogenous danger signals can lead to the assembly of cytoplasmic inflammasomes that stimulate the activation of caspase-1. Subsequently, caspase-1 facilitates the maturation and release of cytokines and also, under some circumstances, the induction of cell death by pyroptosis. Using a mouse line lacking expression of NLRP1, we show that assembly of this inflammasome in cells is triggered by a toxin from Anthrax and that it initiates caspase-1 activation and release of IL-1β. Furthermore, NLRP1 inflammasome activation also leads to cell death, which escalates over three days following exposure to the toxin and culminates in acute lung injury and death of the mice. We show that these events are not dependent on production of IL-1β by the inflammasome but are dependent on caspase-1 expression. In contrast, MDP mediated inflammasome formation is not dependent on NLRP1, but NLRP3. Taken together, our findings show that assembly of the NLRP1 inflammasome is sufficient to initiate pyroptosis, which subsequently leads to a self-amplifying cascade of cell injury within the lung from which the lung cannot recover, eventually resulting in catastrophic consequences for the organism

    Lentivirus-mediated gene therapy for Fabry disease

    Get PDF
    Enzyme and chaperone therapies are used to treat Fabry disease. Such treatments are expensive and require intrusive biweekly infusions; they are also not particularly efficacious. In this pilot, single-arm study (NCT02800070), five adult males with Type 1 (classical) phenotype Fabry disease were infused with autologous lentivirus-transduced, CD34+-selected, hematopoietic stem/progenitor cells engineered to express alpha-galactosidase A (α-gal A). Safety and toxicity are the primary endpoints. The non-myeloablative preparative regimen consisted of intravenous melphalan. No serious adverse events (AEs) are attributable to the investigational product. All patients produced α-gal A to near normal levels within one week. Vector is detected in peripheral blood and bone marrow cells, plasma and leukocytes demonstrate α-gal A activity within or above the reference range, and reductions in plasma and urine globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) are seen. While the study and evaluations are still ongoing, the first patient is nearly three years post-infusion. Three patients have elected to discontinue enzyme therapy

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
    corecore