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Abstract

Functional impairment is one of the most enduring, intractable consequences of psychiatric 

disorders and is both familial and heritable. Previous studies have suggested that variation in 

functional impairment can be independent of symptom severity. Here we report the first genome-

wide association study (GWAS) of functional impairment in the context of major mental illness. 

Participants of European-American descent (N=2,246) were included from three large treatment 

studies of bipolar disorder (STEP-BD) (N=765), major depressive disorder (STAR*D) (N=1091), 

and schizophrenia (CATIE) (N=390). At study entry, participants completed the SF-12, a widely-

used measure of health-related quality of life. We performed a GWAS and pathway analysis of the 

mental and physical components of health-related quality of life across diagnosis (~1.6 million 

single nucleotide polymorphisms), adjusting for psychiatric symptom severity. Psychiatric 
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symptom severity was a significant predictor of functional impairment, but it accounted for less 

than one-third of the variance across disorders. After controlling for diagnostic category and 

symptom severity, the strongest evidence of genetic association was between variants in 

ADAMTS16 and physical functioning (p=5.87 × 10−8). Pathway analysis did not indicate 

significant enrichment after correction for gene clustering and multiple testing. This study 

illustrates a phenotypic framework for examining genetic contributions to functional impairment 

across psychiatric disorders.
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Introduction

Functional impairment is one of the most enduring, intractable consequences of psychiatric 

disorders (Awad and Voruganti, 2012; IsHak et al., 2012; Shippee et al., 2011). By the term 

“functional impairment,” we refer to the persistent interference in daily life activities and 

role performance by psychiatric or related symptoms. Even when psychiatric symptoms 

abate through intervention, quality of life does not always improve (Harvey et al., 2011; 

IsHak et al., 2012). Effective treatments for functional impairment have been scarce, making 

etiological studies valuable for informing novel treatment approaches.

Although functional impairment is a required dimension of DSM-IV psychiatric diagnoses, 

there are also individual differences in the extent of impairment, even for a given level of 

symptom severity (Eack and Newhill, 2007; Priebe et al., 2011; Verboom et al., 2011). This 

evidence coincides with clinical observations that some patients are nearly incapacitated by 

relatively mild symptoms of psychiatric disorders while other patients are able to sustain 

activities of daily living despite moderate to severe psychiatric symptoms. This partial 

disassociation between psychiatric symptoms and disability has led to proposals for DSM-5 

to separate and more clearly delineate the two dimensions (APA, 2010). Our hypothesis is 

that individual variation in functional impairment, given a specific level of symptom 

severity, reflects an axis of risk/resilience that is partly distinct from risk for the psychiatric 

disorder itself.

Genetic contributions to functional impairment have not been extensively explored, but 

there is increasing interest in this topic (Raat et al., 2010; Sprangers et al., 2009). There is 

evidence from twin and family studies in clinical and population samples to support a 

genetic contribution (J. McGrath et al., 2009; Romeis et al., 2005; Steenstrup et al., 2013). 

Two large population-based twin studies (N~3000, N~46,000) using the same functional 

impairment measures as the current study, reported heritability of the composite scores of 

h2~.35 (range .34–.37) (Romeis et al., 2005) and h2~.25 (range .11–.35) with variability due 

to age and gender (Steenstrup et al., 2013). Two family studies have investigated the familial 

aggregation of functional impairment in relatives with schizophrenia. Both found strong 

evidence for the familiality of functional impairment (h2~.60) that was notably higher than 
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for other behavioral traits more closely related to symptoms of schizophrenia (Kendler et al., 

1995; J. McGrath et al., 2009).

This study is the first genome-wide association study (GWAS) of functional impairment in 

psychiatric disorders. We hypothesize an axis of risk/resilience for functional impairment 

that transcends diagnostic boundaries, allowing us to exploit the increased sample size of a 

cross disorder design to maximize power for gene-finding under this set of assumptions. Our 

approach resonates with increasing interest in identifying fundamental dimensions of 

individual difference that transcend diagnostic boundaries as exemplified by the NIMH 

research domain criteria (RDoC) initiative (Insel et al., 2010). This study used the three 

largest psychiatric treatment effectiveness studies for major depressive disorder, bipolar 

disorder, and schizophrenia (STAR*D, STEP-BD, and CATIE, respectively). Each of the 

studies collected extensive phenotypic data, including the SF-12 or SF-36, which are widely 

used, extensively validated, self-report measures of health-related quality of life 

(Contopoulos-Ioannidis et al., 2009; McHorney et al., 1994; McHorney et al., 1993; Ware et 

al., 1996; Ware and Sherbourne, 1992). The questionnaires measure general, rather than 

disease-specific, health status.

Consistent with our conceptualization of an axis of risk/resilience that is partly independent 

from psychiatric symptom severity, we developed a functional impairment phenotype that 

controlled for psychiatric symptom severity. This phenotype captured the extent to which an 

individual was more or less impaired than expected given his/her specific psychiatric 

symptom profile. Here we report the results of the first GWAS and pathway (i.e. gene set) 

analysis of functional impairment across psychiatric disorders.

Methods and Materials

Primary Analysis

Sample Description—For each cohort, study protocols and informed consent procedures 

were approved by institutional review boards at each participating clinical site. Details 

regarding the primary clinical samples and genotyping have reported elsewhere as part of a 

GWAS of cross-disorder disease risk (Huang et al., 2010). The following is a brief 

description.

Major Depressive Disorder (Sequenced Treatment Alternatives to Relieve 
Depression [STAR*D])—STAR*D was a multisite, prospective, randomized multiphase 

clinical trial of outpatients with nonpsychotic major depressive disorder that enrolled 4,041 

participants over a 3-year period (Fava et al., 2003; Rush et al., 2004). Eligibility required 

meeting DSM-IV criteria for a single or recurrent nonpsychotic major depressive episode 

coupled with a score of ≥ 14 on the 17 item Hamilton Depression Rating Scale (Hamilton, 

1960; Hamilton, 1967). The relevant exclusion criteria were: history of bipolar disorder, 

schizophrenia, schizoaffective disorder, or psychosis not otherwise specified. As previously 

described, 1953 individuals from the larger study were enrolled in a genetic sub-study 

(Garriock et al., 2010; Shyn et al., 2011).
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Bipolar Disorder (Systematic Treatment Enhancement Program for Bipolar 
Disorder [STEP-BD])—STEP-BD was a national, longitudinal public health initiative 

which including randomized and standard care components designed to evaluate the 

effectiveness of bipolar treatments (Kogan et al., 2004; Sachs et al., 2003). Over a 7-year 

period, 4,361 participants were enrolled across 20 sites and followed for up to 2 years. 

Eligibility required a consensus DSM-IV bipolar spectrum diagnosis (bipolar I, bipolar II, 

bipolar not otherwise specified, or cyclothymia) on both the Affective Disorders Evaluation 

and Mini-International Neuropsychiatric Interview-PLUS semistructured interviews (Sachs 

et al., 2003). As previously described, 2,089 individuals from the larger study were enrolled 

in a genetic sub-study (Sklar et al., 2008).

Schizophrenia (Clinical Antipsychotic Trials of Intervention Effectiveness 
[CATIE])—CATIE was a multiphase randomized controlled trial of antipsychotic 

medications comprising 1,460 individuals with schizophrenia followed for up to 18 months 

(Lieberman et al., 2005; Stroup et al., 2003). Final study diagnoses of DSM-IV 

schizophrenia were established by CATIE clinicians using the Structured Clinical Interview 

for DSM-IV (Spitzer R et al., 1996) and review of clinical records. Relevant exclusion 

criteria were: diagnosis of schizoaffective disorder, pervasive developmental disorder, 

mental retardation, other cognitive disorder, or single psychotic episode; history of treatment 

resistance; and serious adverse reaction to the study treatments (Stroup et al., 2003). As 

previously described, 738 individuals from the larger study were enrolled in a genetic sub-

study (Sullivan et al., 2008).

Genotyping—As previously described, genotyping of STEP-BD and CATIE samples was 

performed using the Affymetrix GeneChip Human Mapping 500K Array Set (Affymetrix, 

Inc., Santa Clara, Calif.) (Huang et al., 2010). Approximately half of the STAR*D samples 

were genotyped with the same 500K array and the second half with the Affymetrix Human 

Single Nucleotide Polymorphism (SNP) Array 5.0. Genotyping of the STEP-BD samples 

was performed at the Broad Institute (Sklar et al., 2008). Genotyping of the CATIE samples 

was performed at Perlegen Sciences (Mountain View, Calif.) (Sullivan et al., 2008). 

Genotyping of the STAR*D samples run on the Affymetrix 500K array was performed at 

Affymetrix, and genotyping of the STAR*D samples run on the Affymetrix 5.0 array was 

performed at the University of California, San Francisco (Garriock et al., 2010; Shyn et al., 

2011).

Quality control and harmonization of genotype data—Quality control (QC) of the 

genotypic datasets was first performed within each study and then across the combined 

genotypic dataset. Quality control procedures were performed using PLINK 1.07 (http://

pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2009) using standard thresholds (Huang 

et al., 2010; Sklar et al., 2008). Briefly, individuals were excluded if they had overall call 

rates <95%, excess or insufficient heterozygosity, inconsistent gender between genotype and 

phenotype data, or apparent relatedness. We only included non-Hispanic Caucasian 

individuals with European ancestry based on self-reported race and ethnicity information. 

We then confirmed the self-reported ancestry using the PLINK nearest neighbor method 

(Purcell et al., 2007) to detect potential ancestry outliers based on the first 10 
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multidimensional scaling factors. We also visually inspected the clustering of samples with 

HapMap populations to identify any additional outliers. The QC sample size eligible for 

further analysis was 3102 (1507 from STEP-BD, 1199 from STAR*D, and 396 from 

CATIE). This sample size was further reduced based on availability of clinical phenotypes 

(see phenotype description below).

SNPs were excluded if they had a call rate <95%, had a minor allele frequency <1%, failed 

Hardy-Weinberg equilibrium at a p value of <1×10−6, showed haplotype-based nonrandom 

missingness, or showed differential rates of missingness in patients and controls (Sklar, 

2008; Huang, 2010). Note that the control dataset was not employed in the current 

quantitative case-only analyses, but these SNPs were excluded to maintain consistency with 

previous QC procedures (Huang et al., 2010).

A total of 224,826 genotyped SNPs passed QC criteria across each of the samples. We used 

BEAGLE, Version 3.1.0, (http://www.stat.auckland.ac.nz/~bbrowning/beagle/beagle.html) 

to impute missing genotypes, with HapMap2 (Centre d’Etude du Polymorphisme Humain 

from Utah population, release 23, forward strand) as the reference panel (hg18). Individuals 

were imputed in 10 separate sets that were composed of randomly selected individuals from 

each study. We selected only the highest quality imputed SNPs based on a plink imputation 

quality score (INFO) between 0.8 and 1.2 and minor allele frequency >2%. The INFO 

metric is based on the ratio of empirical and expected variance in dosage where better 

imputation quality is expected for values closer to 1. Values greater than 1 indicate strong 

departure from Hardy-Weinberg Equilibrium. After QC, a total of 1,633,452 SNPs were 

available for final analysis using the imputed dosages.

Phenotypic Definition

The current study focuses on the baseline measurement of functional impairment that was 

given at entry into each treatment study. STEP-BD administered the SF-36 (Ware et al., 

1994), while STAR*D and CATIE administered the SF-12 (version 1) which is a subset of 

the SF-36 items (Ware et al., 1995). The SF-12 score can be obtained using the SF-36 by 

scoring only the 12 overlapping items (Ware et al., 1995). The SF-12 is further divided into 

two sub-dimensions, each with 6 items, the Mental Component Summary (MCS) scale and 

the Physical Component Summary (PCS) scale. As part of the scoring algorithm, the MCS 

and PCS scales are transformed to have a mean of 50 and a standard deviation of 10 in the 

general U.S. population. The MCS and PCS were developed to be independent measures of 

health-related quality of life with a negligible correlation in population samples (Ware et al., 

2002). The reliability and validity of the SF-12 has been found to be satisfactory for 

psychiatric clinical samples (Russo et al., 1998; Salyers et al., 2000; Tunis et al., 1999). In 

the current sample, Cronbach’s alpha was in the satisfactory range for the MCS and PCS of 

each study (STEP-BD MCS α=.84, PCS α=.84; STAR*D MCS α = .68, PCS α =.85; 

CATIE MCS α = .79, PCS α = .82). The convergent validity of the SF-12/SF-36 in the 

current sample has been demonstrated in previous reports from STEP-BD and STAR*D 

showing that poorer health-related quality of life was associated with clinical and 

demographic characteristics, such as depression severity and disadvantaged 

sociodemographic background (Daly et al., 2010; Trivedi et al., 2006; Zhang et al., 2006). 
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Table 1 shows the means and standard deviations of the MCS and PCS in the final sample 

included in the analysis.

A primary concern for our phenotypic conceptualization was that, to the extent possible, 

ratings of mental and physical health-related quality of life should be independent from the 

current severity of psychiatric symptoms. As a result, we constructed novel phenotypes 

which were derived from the residuals of independent regressions of the MCS and PCS on 

psychiatric symptom severity, age, and gender (details below). To capture psychiatric 

symptom severity, we selected constructs that captured the defining features of the primary 

disorders: depressed mood, irritability, elevated mood, and psychosis. Across samples, we 

selected the most comparable items from the available measures (see Supplementary Table 

1).

We selected one among several possible strategies for constructing residuals. For example, 

one might consider controlling for an entire psychiatric measure (i.e., the Hamilton 

Depression Rating Scale in STAR*D, the Positive and Negative Syndrome Scale in CATIE, 

the Young Mania Rating Scale and Montgomery–Asberg Depression Rating Scale in STEP-

BD) rather than individual items as in the current study. This approach of regressing out 

different measures across studies has the potential benefit of controlling for psychiatric 

symptom severity more comprehensively, but two important limitations. First, this approach 

would increase the conceptual heterogeneity of the residuals since different symptoms 

would be regressed out across studies, making the interpretability of results more difficult. 

Secondly, many of the scales include items that are related to functional impairment. As 

such, we wanted to retain this variance of interest while still controlling for severity of core 

psychiatric symptoms and the correlated functional impairment attributable to these core 

symptoms.

A 14 day window was used to ensure broadly concurrent administration of the SF-12 and 

psychiatric symptom measures, while simultaneously minimizing missing data. The sample 

sizes reported in Table 1 reflect the total number of individuals in the final analysis who 

passed QC and had concurrent SF-12 and psychiatric symptom measures.

The MCS and PCS phenotypes for genetic analysis consisted of residuals from the 

previously described regressions, standardized within study. Supplementary Tables 2 and 3 

present the regression results along with the adjusted model R2. As expected, more of the 

variance was shared with psychiatric symptoms for the MCS than for the PCS. Standardized 

residuals were chosen in order to equate the units for a cross-disorder analysis and control 

for mean differences between disorders. This standardized residual represents a within-

disorder statistic that captures the deviation of an individual from an expected functional 

impairment score given their level of psychiatric symptom severity. We conceptualize this 

quantitative phenotype as an index of functional risk/resilience in the context of a 

psychiatric disorder.

Analysis

Control for confounding by population stratification was performed by calculating the first 

10 multidimensional scaling (MDS) components for all those individuals in the merged 
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genotypic dataset who had complete SF-12 phenotypes and concurrent psychiatric measures. 

To examine the effect of each of the 10 MDS components (C1–C10), we calculated the 

genomic inflation factor (λ) from a GWAS using each component (C1–C10) as the 

dependent variable as described by Huang et al. (2010). We plotted the λ’s against each of 

the components (analogous to a scree plot) and found excessive values only for C1–C3. 

Thus, we used these first three MDS components as covariates in our GWAS.

Quantitative genetic association analyses were performed with PLINK, version 1.07 (Purcell 

et al., 2007) using linear regression of the MCS or PCS standardized residuals on single SNP 

allelic dosage, adjusting for the first three MDS components and a dummy variable denoting 

each contributing study. The alpha level for genome-wide significance was set at p<2.5 × 

10−8 which represents the conventional genome-wide significance level (p<5 × 10−8) (Pe’er 

et al., 2008) corrected for two phenotypes tested.

Genotyping confirmation of top GWAS imputed signal

Because the top signal from the cross-disorder GWAS was primarily imputed, we selected 6 

SNPs for confirmation genotyping in the linkage disequilibrium block identified by the 

imputed dataset. Primers were designed using MassARRAY Assay Design (Sequenom) and 

run through e-PCR using an in-house alignment tool highly sensitive for short primer 

sequences (A Kirby, unpublished).

SNP genotyping was performed on the Sequenom MassArray platform at the Massachusetts 

General Hospital Center for Human Genetic Research. Following DNA amplification by 

multiplex PCR, a pooled single base extension reaction was performed using the Sequenom 

iPLEX Gold assay. Allelic differentiation was detected with MassARRAY MALDI-TOF 

mass spectrometry. After baseline correction and peak identification, the spectra were 

analyzed using Sequenom MassARRAY Typer 4. The following quality control thresholds 

were used for exclusion: sample pass rate < 90%, SNP pass rate < 90%, minor allele 

frequency < 0.01, and Hardy-Weinberg equilibrium (HWE) p-value < 1×10−5 (actual HWE 

p-values were p>.3 for the 6 SNPs). Genotyping concordance rate for duplicate samples 

after removal of low quality data (n = 22 pairs) was 100%. All six of the selected SNPs 

passed QC criteria. Two individuals failed QC resulting in a final dataset of 2244 

individuals.

Pathway analysis

Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA; http://

www.broadinstitute.org/mpg/magenta) (Segre et al., 2010) was used to test whether specific 

biological pathways were enriched for associations to the phenotypes of MCS and PCS 

(separately). MAGENTA assigns scores to specific genes based on the most significant SNP 

in the gene and user-specified flanking regions (35kb upstream, 10kb downstream). The 

resulting gene score is corrected for important confounders such as gene size, SNP density, 

linkage disequilibrium (LD) properties, and recombination hotspots. We removed the HLA 

region from the analysis due to high LD and gene density in this region (MAGENTA default 

chr6:29,710,331–33,150,000 hg18). MAGENTA requires user-specified thresholds for 

nominal significance of gene-level p-values in order to calculate pathway significance. We 
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used the MAGENTA defaults of the 95th and 75th percentile cut-offs. We chose to analyze 

pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) (N=186 pathways, 

mean # of genes per pathway = 86 (SD = 68), range 10–389) because they are curated with 

high standards for evidence. See Segre et al. (2010) for other details about the MAGENTA 

method.

Results

The regression analyses to derive the MCS and PCS functional impairment residuals, 

controlling for psychiatric symptom severity, age, and gender are reported in Supplementary 

Tables 2 and 3. From these analyses, it is clear that psychiatric symptom severity and 

demographic variables were significant predictors of functional impairment, but these 

variables accounted for less than one-third of the variance in both measures, across the three 

cohorts (MCS 20–31%, PCS 5–19%). The fact that more of the variance in MCS than PCS 

was accounted for by psychiatric symptoms is consistent with the item content of the MCS 

in which three of the six items are closely related to symptoms of depression (i.e., sadness, 

fatigue, calmness). Overall, these analyses indicated that there is variance remaining in 

functional impairment scores after controlling for psychiatric symptoms and demographic 

variables. The rest of our analyses utilized the residuals from these regressions standardized 

within disorder.

To establish the validity of these functional impairment residuals, we also tested for a 

relationship with a widely-used objective measure of functional impairment, current 

employment status. In each cohort, we conducted a logistic regression of employment status 

on MCS and PCS residual scores. Individuals who reported full-time or part-time 

employment were grouped together and compared to those who were unemployed. Both the 

MCS and PCS residuals showed significant relationships with employment status across all 

3 disorder samples, with the exception of the MCS in CATIE. Because the sample size is 

smallest and employment rates were lowest in CATIE (15% compared to 49% in STEP-BD 

and 58% in STAR*D), power was limited in this sample, but the odds ratio (OR) of the 

effect for MCS in CATIE (OR=1.13) was comparable to the other samples (ORs = 1.13–

1.18). Across samples, the PCS residual was more strongly related to occupational status 

(ORs = 1.4–1.8) than the MCS residual (see Supplementary Table 4).

The top 10 GWAS results using the MCS and PCS residuals as phenotypes in the combined 

psychiatric sample are reported in Tables 2 and 3 as linkage disequilibrium clumped regions. 

Supplementary Tables 5 and 6 report all regions with p< 10−4. Supplementary Figures 1 and 

2 show Q-Q and Manhattan plots (λ MCS = 1.007, λ PCS = .995). The strongest association 

evidence was between SNPs in the gene ADAMTS16 with PCS. Figure 1 shows the regional 

plot of this gene. The top association signal (p=5.87 × 10−8) approached genome-wide 

significance, although it did not meet our strict alpha criteria of 2.5 × 10−8. Further 

investigation of this region indicated that the strongest signal was derived from imputed 

SNPS with only modest evidence from the nearby genotyped SNPs (see Figure 1). Follow-

up genotyping of the top imputed SNPs confirmed the signal with a similar effect size and p-

value, ruling out technical or imputation artifacts as a source of the signal (see 

Supplementary Table 7 and diamonds denoted in Figure 1). Figure 2 shows the forest plot of 
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the effect sizes for the top SNP, rs16875288, across the 3 psychiatric disorders. There was 

no statistically significant evidence of heterogeneity according to the Cochrane’s Q statistic 

(p=.34) which was supported by the I2 heterogeneity index (I2= 7.35).

Pathway analysis did not reveal any significant enrichment after correction for gene 

clustering and multiple testing (2 phenotypes (MCS, PCS), 2 thresholds (75%, 95%), and 

186 pathways; corrected alpha threshold = 6.7 × 10−5) (Supplementary Tables 8 and 9). 

Before accounting for gene clustering, two pathways related to inflammation and 

autoimmune disorders showed evidence of enrichment of genetic associations to PCS 

(Supplementary Table 8). However, these two pathways shared 13 interferon alpha genes, 

12 of which (IFNA genes: 2, 4, 5, 6, 7, 8, 10, 13, 14, 16, 17, 21) are clustered in a gene 

dense, LD block on chromosome 9 (Supplementary Figure 5). Because pathway analysis 

statistics can be inflated by gene dense areas with strong LD, we completed a secondary 

analysis in which we excluded all but the most significant gene in the interferon alpha 

region. Although this was a conservative approach, it was justified by the fact that 

conditional SNP analysis did not reveal any evidence of independent signals in the region. 

Following this correction, the p-values of the previously significant pathways decreased by 

several orders of magnitude and were no longer significant (Supplementary Table 8).

Discussion

Mood and psychotic disorders are known to be associated with substantial disability, but 

prior research and clinical experience suggest that variation in functional impairment does 

not necessarily track with symptom severity. We hypothesized that there is an axis of 

functional risk/resilience in the presence of psychiatric illness that is separable from 

symptom burden and diagnostic category. In light of prior evidence that functional status 

(indexed by the SF-36) is moderately heritable, we conducted a genome-wide search for 

variants associated with this phenotype.

To isolate genetic influences on mental and physical functioning, we controlled for 

psychiatric symptom severity, diagnostic group, and other relevant covariates. These 

analyses revealed that psychiatric symptom severity accounted for a minority of the variance 

in functional impairment, consistent with our hypothesis that there is an axis of risk/

resilience that is distinct from severity of the disorder. In essence, our phenotypic approach 

was designed to identify genetic modifiers that affect the functional impact of psychiatric 

disorder irrespective of whether they influence risk for the disorder itself (Fanous and 

Kendler, 2005).

The strongest association evidence we observed was between variants in ADAMTS16 

(ADAM metallopeptidase with thrombospondin type 1 motif, 16) and physical health-

related quality of life (PCS) (p=5.87 × 10−8). We interpret these results cautiously given that 

the association signal did not exceed genome-wide significance. This gene has been 

previously implicated in hypertension via converging evidence from fine-mapping of 

quantitative trait loci in rats and association and linkage analyses in humans (Joe et al., 

2009), although ADAMTS16, did not emerge as a candidate in the recent large-scale GWAS 

for hypertension involving 200,000 individuals (Ehret et al., 2011). ADAMTS16 is expressed 
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in the adult brain, but has had limited biological characterization to date (Cal et al., 2002; 

Porter et al., 2005; Surridge et al., 2009). In our study, SNPs with the strongest association 

signals in ADAMTS16 are intronic and do not have documented eQTL annotations in brain 

tissue (Gibbs et al., 2010; Myers et al., 2007) or in lymphoblastoid cell lines (Stranger et al., 

2012; Yang et al., 2010) leaving the functional implications of these SNPs unknown. Further 

biological and genetic studies are needed to understand the potential role of ADAMTS16 in 

functional impairment and resilience. Future analyses may also examine the genetic and 

phenotypic relationship between risk/resilience for functional impairment in the context of 

psychiatric disorders and other traits that may impact health-related quality of life, including 

personality traits (e.g., Kentros et al., 1997), motivation (e.g., Foussias et al., 2011), social-

cognition (e.g., Hoertnagl et al., 2011; Maat et al., 2012), and neurocognitive functioning 

(e.g., Depp et al., 2012; Green, 1996; Tolman and Kurtz, 2012).

After careful correction for multiple testing and gene clustering, there was no evidence of 

association for any of the KEGG pathways. Although there was an initial signal in 

autoimmune and inflammatory processes for PCS, follow-up analyses suggested that results 

were artifactually driven by a single signal within the interferon alpha gene cluster on 

chromosome 9. These results emphasize the importance of controlling for LD patterns in 

pathway analyses and suggest that, like the HLA region, the interferon alpha region on 

chromosome 9 can be problematic.

Our results should be interpreted in the context of their limitations. First, based on the 

available sample size, we had >80% power to detect a locus explaining 2% or more of the 

variance in MCS or PCS scores. Our strongest result approached but did not exceed a 

genome-wide threshold of statistical significance. Thus, analyses in larger samples will be 

essential to clarify our findings. To our knowledge, there are no comparable psychiatric 

samples with functional impairment measures and GWAS data available. As a result, we 

could not attempt replication of these results or examine cross-sample correspondence via 

more advanced statistical genetic approaches (i.e., polygenic scoring, Purcell et al., 2009). 

Fortunately, there is an ongoing data collection effort aimed at examining genetic predictors 

of quality of life, the GENEQOL consortium (Sprangers et al., 2009), so future datasets with 

rich quality of life and genetic data will become available to examine correspondence with 

these results.

Second, self-report measures are only one strategy among many for measuring functional 

status (Awad, 2011; Bromley and Brekke, 2010; Harvey et al., 2011). Alternative measures 

include real-world outcomes (i.e., occupational status, residential status, educational 

attainment) and functional capacity (i.e., ability to perform real-world skills such as 

managing money, paying bills). Of note, our derived mental and physical functioning 

measure was significantly associated with employment status across the three disorders, 

after controlling for psychiatric symptom severity, supporting their relevance to real world 

outcomes. Recently, functional capacity, with an emphasis on performance-based testing, 

has been advanced as a candidate endophenotype for genetic studies of severe mental illness 

(Harvey et al., 2011). Genetic investigations of alternative measures of functional 

impairment will be complementary to the current analyses and important for characterizing 

genetic effects on functional vulnerability/resilience in the context of psychopathology.
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Third, the psychiatric symptom measures were different across the three disorder samples 

which may have provided different degrees of control for psychiatric symptom severity 

across the disorders. To address this limitation, we chose clinician-rated scales with similar 

wording and scales wherever possible (see Supplementary Table 1). Moreover, mental 

functioning, as measured by the SF-12, was more difficult to distinguish from psychiatric 

symptom severity than physical functioning given the overlap of constructs, particularly 

with depressive features (i.e., fatigue, calmness, sadness). This fact may have differentially 

diminished our power for the MCS analyses relative to the PCS.

Despite these limitations, we believe these results contribute to the emerging literature on 

genetic risk factors for functional impairment in psychiatric disorders. Our phenotypic 

approach of capturing functional impairment independent of concurrent psychiatry symptom 

severity provides a model for future genetic studies. The overall approach of identifying 

modifier genes that impact functional impairment across psychiatric disorders could provide 

valuable insight into novel treatment approaches that might directly impact functional 

impairment in the context of psychopathology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Regional plot of the strongest associated SNPs in ADAMTS16 with the PCS. Marker shapes 

indicate whether the SNP was genotyped, imputed, or confirmed with follow-up genotyping. 

Plotted using LocusZoom (Pruim et al., 2010)
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Figure 2. 
Forest plot of effect sizes across the psychiatric samples for rs16875288.
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Table 1

Phenotypic descriptive across samples. The population mean and standard deviation for the SF-12 is M=50, 

SD=10.

STAR*D STEP-BD CATIE Total

Sample size N 1091 765 390 2246

MCS M (SD) 26.1 (8.3) 32.6 (12.3) 40.0 (11.6) 30.7 (11.6)

PCS M (SD) 50.9 (11.8) 47.0 (10.9) 47.8 (10.3) 49.0 (11.4)
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Table 2

Loci showing strongest evidence of association with MCS.

Chromosome SNP p Additional SNPs (p<.0001), r2>.25 Nearest Genes (within 50kb)

3 rs4681346 2.61E-06 32 []

1 rs7535475 3.23E-06 5 [HSPA6,FCGR3A,FCGR2A]

8 rs2736871 3.42E-06 4 [ST3GAL1]

12 rs10878563 1.10E-05 1 []

10 rs10883890 1.59E-05 3 [SH3PXD2A,NEURL]

5 rs888643 1.63E-05 5 []

9 rs988954 1.81E-05 2 [PTPRD]

22 rs5993665 2.04E-05 14 [UFD1L,MRPL40,HIRA,CLDN5,CDC45L,C22orf39]

3 rs6809127 2.22E-05 6 []

3 rs10513787 2.42E-05 17 []
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Table 3

Loci showing strongest evidence of association with PCS.

Chromosome SNP p Additional SNPs (p<.0001), r2>.25 Nearest Genes (within 50kb)

5 rs16875288 5.87E-08 4 [ADAMTS16]

17 rs7221595 4.53E-06 32 [ZZEF1,CYB5D2,ANKFY1]

3 rs9877870 1.28E-05 30 [LPP]

4 rs6848750 2.05E-05 7 [MGC48628]

8 rs2737327 2.38E-05 1 [WRN]

11 rs10890798 2.43E-05 7 [RAB39,CUL5,ACAT1]

4 rs17015692 2.63E-05 1 []

8 rs10095012 2.91E-05 6 []

18 rs550139 3.30E-05 6 [MAPRE2]

20 rs6095959 3.67E-05 3 [PTPN1]
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