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ARTICLE

Lentivirus-mediated gene therapy for Fabry disease
Aneal Khan1, Dwayne L. Barber 2,3, Ju Huang2, C. Anthony Rupar4,5,6, Jack W. Rip4, Christiane Auray-Blais7,

Michel Boutin7, Pamela O’Hoski8, Kristy Gargulak9, William M. McKillop9, Graeme Fraser10, Syed Wasim11,

Kaye LeMoine12, Shelly Jelinski13,14, Ahsan Chaudhry15, Nicole Prokopishyn16, Chantal F. Morel17,

Stephen Couban18,24, Peter R. Duggan 19, Daniel H. Fowler20, Armand Keating2,21, Michael L. West22,

Ronan Foley8 & Jeffrey A. Medin 2,9,23✉

Enzyme and chaperone therapies are used to treat Fabry disease. Such treatments are

expensive and require intrusive biweekly infusions; they are also not particularly efficacious. In

this pilot, single-arm study (NCT02800070), five adult males with Type 1 (classical) phe-

notype Fabry disease were infused with autologous lentivirus-transduced, CD34+-selected,

hematopoietic stem/progenitor cells engineered to express alpha-galactosidase A (α-gal A).
Safety and toxicity are the primary endpoints. The non-myeloablative preparative regimen

consisted of intravenous melphalan. No serious adverse events (AEs) are attributable to the

investigational product. All patients produced α-gal A to near normal levels within one week.

Vector is detected in peripheral blood and bone marrow cells, plasma and leukocytes

demonstrate α-gal A activity within or above the reference range, and reductions in plasma

and urine globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) are seen.

While the study and evaluations are still ongoing, the first patient is nearly three years post-

infusion. Three patients have elected to discontinue enzyme therapy.
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In Fabry disease, mutations of the X-linked GLA gene lead to
accumulation of glycosphingolipids including globo-
triaosylceramide (Gb3)1,2 and globotriaosylsphingosine

(lyso-Gb3)3,4. This results in end-organ damage to the kidneys,
heart, and brain leading to a decreased life expectancy5,6. Current
approved treatments for Fabry disease include enzyme therapy
(ET) and an oral pharmacologic chaperone (migalastat)7–9.
Biweekly ET can reduce Gb3 levels in urine, plasma, and tissues
but is intrusive, not curative, and progressive disease continues to
cause clinical symptoms and a decreased lifespan10,11. Moreover,
antibody formation directed against the recombinant enzyme
occurs, which may affect therapy outcome10. The short plasma
half-life12 requires biweekly infusions at considerable cost.
Despite these issues, ET is recommended for treatment of Fabry
patients to prevent progression in conjunction with nonspecific
adjunctive therapies13–15. Migalastat is protein-variant specific,
and therefore only available to a subset of Fabry patients with
amenable mutations8.

Gene therapy, in theory, would enable Fabry patients to receive
a single treatment that could be more effective than current
options and free them from ET. Transduced cell populations that
continuously produce α-gal A may be more effective clinically. As
well, cross-correction may make Fabry disease particularly
amenable to gene therapy; enabling systemic correction with a
lower number of vector transduced cells16,17. Transgenic mice,
with tissue α-gal A activity >10,000 times endogenous levels, were
healthy and did not have altered cyto-architecture;18,19 thus high
levels of α-gal A may not be deleterious.

In a pilot safety study, we have targeted enriched CD34+
hematopoietic stem/progenitor cells (HSPCs) for lentivirus (LV)-
mediated gene therapy in patients with Fabry disease
(NCT02800070, Fig. 1). Transduced HSPCs may deliver the
functional enzyme to sites not accessible to ET. HSPC progeny
may be a major source of Gb3 and lyso-Gb3; this may correct
substrate accumulation at the point of origin. Use of autologous
primitive HSPCs with conditioning may facilitate immune

tolerance. We employed a recombinant LV with a self-
inactivating LTR design and an optimized Kozak start sequence
to deliver a human codon-optimized α-gal A transgene20. A
single ex vivo LV transduction allowed for controlled dosing of
the vector with a relatively low multiplicity of infection that
should minimize insertional mutagenesis events20. We also uti-
lized reduced-intensity melphalan conditioning, enabling out-
patient management, fewer Grade 3 or 4 adverse events, and
reduced cost. We report safety and outcome measures of the first
gene therapy trial for Fabry disease.

Results
Patient enrollment. Male patients with known Fabry disease from
the Canadian Fabry Disease Initiative study of ET were approa-
ched for possible enrollment. Seven male Fabry disease patients
previously treated with ET, ages 29–48 years, were enrolled
(Table 1, Supplementary Table 1); two patients failed screening
tests associated with inclusion and exclusion trial criteria. Patients
were followed from January 2017 to February 2020 for this study.
Ongoing follow-up will extend until February 2024.

Study objectives. The primary objectives of this study were to
determine the safety and toxicity of autologous stem cell trans-
plantation with mobilized CD34+ hematopoietic cells transduced
with a lentiviral vector containing human codon-optimized α-gal
A cDNA in adult male Fabry disease patients. Several secondary
objectives were analyzed including monitoring levels of α-gal A
activity in plasma, peripheral blood leukocytes and bone-marrow-
derived mononuclear cells, and measuring levels of Gb3 and lyso-
Gb3 in plasma and urine. In addition, the transduction efficiency
of CD34+ hematopoietic cells was assessed as well as the pre-
sence and persistence of marked cells expressing α-gal A in
peripheral blood. An exploratory objective was also incorporated
to track the levels of anti-α-gal A antibodies in recipients. The
primary endpoint of this study was toxicity as assessed using the
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Fig. 1 Study schema. Five men with Type I Fabry disease were infused with autologous transduced CD34+-selected hematopoietic stem/progenitor cells
engineered to express α-galactosidase A (α-gal A) following mild ablation. ET enzyme therapy.
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National Cancer Institute of Canada (NCIC) Common Termi-
nology Criteria for Adverse Events (CTCAE), Version 4.03.
Because of the small sample size of this clinical study, there was
insufficient power for comprehensive statistical analysis.

Mobilization and leukapheresis. During the pretreatment phase,
ET was stopped for a minimum of 30 days prior to transplant. ET
was stopped so that we could obtain a consistent cohort of
baseline measurements. After cessation of ET, peripheral blood
(PB) CD34+ HSPCs were mobilized using filgrastim in Patients 1
and 5, and filgrastim and plerixafor in Patients 2–4. Leukapher-
esis yielded 5.1–18.1 x 106 CD34+ cells/kg, with a final total
number of 3.65–8.35 x 108 CD34+ cells (Table 1). The drug
product yield was 3.1–13.8 x 106 CD34+ cells/kg (Table 1).

Treatment phase. Enzyme activity, colony PCR, and VCN assays
were performed on the drug product (Table 1). Prior to infusion,

patients were administered a single dose of melphalan IV at
100 mg/m2 on Day −1. On Day 0, autologous CD34+ transduced
cells were infused. Filgrastim (5 μg/kg) was administered sub-
cutaneously daily from Day 5 until neutrophil count reached
≥1.5 x 109 cells/L. All patients (except Patient 3) restarted ET
30 days after infusion. According to a Health Canada-approved
protocol amendment, all patients are eligible to discontinue
ET. Two patients subsequently discontinued ET (Patient 1 at day
548, Patient 4 at day 214 after transplantation, respectively). A
third patient (Patient 3) chose not to resume ET after
transplantation.

α-gal A enzyme activity. Circulating α-gal A activity was
first detected in all patients between Days 6 and 8 following
infusion and attained reference range levels in all patients
(Fig. 2a). Leukocyte α-gal A reached specific activity levels
above the reference range (Fig. 2b). Both plasma α-gal A

Table 1 Baseline patient demographics and treatment phase outcomes.

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Age (years) 48 39 39 37 29
GLA mutation p.Gln321Arg p.Ser345Pro p.Ala143Pro p.Ala143Pro p.Tyr134Ser
Age at diagnosis (years) 36 29 0 4 14
Age started ET (years) 36 33 36 26 29
Fabry symptoms at baseline
Acroparesthesia x
Angiokeratoma x x x x
Cardiomyopathy x x x
Chronic kidney disease x
Cold intolerance x
Corneal verticillata x x x
Gastrointestinal x x x x
Heat intolerance x
Hypertension x x
Hypohidrosis x x x
Headaches and migraines x
Pain x x
Peripheral sensory neuropathy x
Proteinuria x x
Tinnitus or hearing loss x x x
Mobilization agents G-CSF G-CSF+ plerixafor G-CSF+ plerixafor G-CSF+ plerixafor G-CSF
Apheresis yield CD34+ cells ×106/kg 8.4 9.2 18.1 9.0 5.1
Drug product VCN (copies/genome) 0.68 1.43 0.81 1.37 1.13
Drug product infused: CD34+ cells ×106/kg 4.9 6.4 13.8 6.2 3.1
Colony PCRa

Mock 0% 0% 0% ND ND
LV-AGA (Drug Product) 52% 62% 54% ND ND
Colony PCR on Day −2 BM samples ND 0/86 (0%) 0/88 (0%) 0/92 (0%) 0/88 (0%)
Colony PCR on Day 28 BM samples 10/28 (35.7%) 70/92 (76.1%) 63/90 (70.0%) 52/92 (56.5%) 56/88 (63.6%)
Actual study day for colony PCR Day 33 Day 28 Day 28 Day 28 Day 32

Day −2 BM α-gal A nmoles/hr/mg 0.3 1.0 1.6 1.0 0.8
Day 28 BM α-gal A nmoles/hr/mg 220 350 169 320 569
Time to engraftment (absolute neutrophil
count >0.5 x 109 cells per L)b

Day 12 Day 13 Day 11 Day 11 Day 12

Time to engraftment
(platelet count >20 x 109 per L)

Day 12 Day 12 Day 12 Day 11 Day 12

Day −2 BM VCN copies/genome 0.00 0.00 0.00 0.00 0.00
Day 28 BM VCNc copies/genome 0.47 0.89 0.33 1.10 1.21
Maximum PB VCN copies/genome 0.55 1.10 0.78 0.65 1.30
First Day Plasma α-Gal A activity observed Day 8d Day 7 Day 6 Day 6 Day 7
Days from Cell Infusion to ET withdrawal +548 ND −41e +214 ND

BM bone marrow, ET enzyme therapy, ND not done, PB peripheral blood, PCR polymerase chain reaction, VCN vector copy number.
aTransduction efficiency—colony PCR assays.
bRef. 35.
cDay 28–33.
dDefined by activity >2 times the average of pretransplant values.
ePatient 3 discontinued ET prior to infusion and chose not to resume.
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enzyme activity levels and leukocyte α-gal A specific enzyme
activity levels decreased over time; yet the activity levels are
above Fabry disease patients21 and have not returned to ori-
ginal baseline levels (Fig. 2a, b)22. Plasma and leukocyte α-gal
A-specific activities mirrored each other (Supplementary
Fig. 1).

Vector copy number. The infused drug product vector copy
number (VCN) ranged from 0.68 to 1.43 (copies/genome)
(Table 1). The VCN ranged from 0.33 to 1.21 (copies/genome) in
bone marrow (BM) aspirates obtained from each patient at one
month (Table 1). PB VCN reached a range of 0.55 to 1.10 copies/
genome in all patients and has decreased over time but has

a

b

c

Fig. 2 α-galactosidase A (α-gal A) enzyme activity and vector copy number (VCN). a Plasma α-gal A activity attained reference range levels in all
patients; although decreased over time, the plasma α-gal A enzyme activity levels are above what is observed in Fabry disease patients and have not
returned to original baseline levels. The reference ranges (dotted lines) were defined by Dr. Rupar’s laboratory based on 150 specimens referred for
diagnostic testing. Males with classic Fabry disease have plasma levels around 1 nmol/h/ml. b Leukocyte α-gal A attained supranormal specific activity
levels for each patient. Although decreased over time, leukocyte α-gal A-specific enzyme activity levels are above what is seen in Fabry disease patients
and have not returned to original baseline levels. The reference ranges (dotted lines) were defined by Dr. Rupar’s laboratory based on 150 specimens
referred for diagnostic testing. c VCN in peripheral blood reached between 0.55 and 1.10 copies/genome in all patients, and although decreased over time,
has remained above 0.05 copies/genome in all patients to date (almost 3 years in Patient 1).
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remained above 0.05 copies/genome in all patients (almost 3 years
in Patient 1) (Table 1, Fig. 2c). VCN mirrored leukocyte α-gal A-
specific activity (Supplementary Fig. 2).

Plasma and urine Gb3/lyso-Gb3 levels. Total plasma and urine
Gb3 levels were variable, especially during the Treatment Phase.
Plasma and urine lyso-Gb3 levels were reduced over time in most
patients (Fig. 3). This reduction was sustained after dis-
continuation of ET in Patient 3, with the exception of urine Gb3.
Increases in urine Gb3 levels were also observed when Patients 1
and 4 stopped ET treatment. Urine lyso-Gb3 also increased after
Patient 1 stopped ET treatment. Plasma Gb3 levels in Patient 3
fluctuated after infusion, but rose at later time points. Plasma Gb3
and plasma lyso-Gb3 have increased in Patient 4 after this patient
chose to stop ET. Data for the Treatment Phase for all parameters
shown in Figs. 2 and 3 are illustrated in Supplementary Fig. 3.

Clinical parameters. Patients initially experienced a drop in
weight during the Treatment Phase. In Patients 1–3 and 5,
weights increased over time following transplantation (Fig. 4a).
eGFR increased during the Treatment Phase in all patients
(Fig. 4b). Following gene therapy, eGFR returned to baseline
levels and was relatively stable in all patients, except for Patient 2.
This patient displayed progressive chronic kidney disease with
significant proteinuria (Table 1) during screening. Linear
regression demonstrated that Patient 2 had the steepest eGFR
slope, whereas the eGFR slope was near zero for the remaining
patients (Supplementary Fig. 4). Proteinuria was also described in
Patient 1 during screening (Table 1); 24-h urinary protein mea-
surements confirmed this observation in Patients 1 and 2
(Fig. 4c). Patient 1 was described with left ventricular hyper-
trophy during screening (Table 1). Monitoring of troponin levels
suggests that Patient 1 is displaying cardiac features of Fabry

disease (Fig. 4d). Left ventricular mass index (LVMI) monitoring
by MRI and ECHO revealed that cardiac hypertrophy observed in
Patient 1 was relatively stable for nearly three years post-infusion
(Fig. 4e). LVMI was also stable for Patients 2, 4, and 5 during the
study period.

Anti-α-gal A antibody titer. Anti-α-gal A antibody (IgG) levels
increased for Patient 1 within 6 months post-infusion, before
gradually declining (Fig. 5). Patient 3 had the highest titer at
screening, which was maintained through mobilization and the
Treatment Phase but decreased after 6 months. Patients 4 and 5
had low titers at screening, which dropped by mobilization
(Patient 5) or after the Treatment Phase (Patient 4). Patient 2 had
no detectable anti-α-gal A antibody.

Safety monitoring. No unexpected trends or safety events have
been identified. The safety profile is consistent for patients
undergoing melphalan conditioning for autologous hematopoie-
tic cell transplantation (Supplementary Table 2). Two AEs
(nausea [Grade 1] and cough [Grade 2]) were possibly related to
the investigational product. There were 20 AEs reported of Grade
3 or 4 (Supplementary Table 2). Patient 2 experienced anorexia
over 51 days corresponding to a lack of appetite (Supplementary
Table 2) and this was assessed to be related to study procedures.
All AEs Grade 3 or higher were unrelated to protocol treatment,
but were related to the study procedures. Two SAEs were related
to the study procedures (febrile neutropenia in Patient 4 and
peripherally inserted central catheter line infection/thrombosis of
the right arm in Patient 5).

Discussion
In this pilot clinical trial of LV-mediated gene therapy in 5 men
with Type 1 (classical) Fabry disease, all patients demonstrated a

b

dc

a

Fig. 3 Total plasma and urine globotriaosylceramide (Gb3) and lyso-Gb3 levels. Plasma Gb3 (a), plasma lyso-Gb3 (b), urine Gb3 (c), and urine lyso-Gb3
(d) levels are illustrated for each patient. Red arrow is at Day −30 when ET was stopped prior to mobilization. Green arrow is at Day 30 when ET was
restarted for Patients 1, 2, 4, and 5. The orange arrow demarks when Patient 4 stopped ET at Day 214 and the blue arrow is when Patient 1 stopped ET at
Day 548. Patient 3 chose not to restart ET.
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sustained safety profile. One patient is now out nearly 3 years
from his infusion date. We chose a reduced-intensity condition-
ing regimen for drug product engraftment, based on many years
of transplant experience with melphalan in Toronto. Since there
is limited experience with transplant conditioning procedures in
Fabry patients, and Fabry disease patients have considerable
comorbidities, we also wanted to establish whether mobilization
and engraftment could be tolerated in this population. All
patients received a low melphalan dose; 3 men (Patients 1, 4, and
5) received the treatment as an outpatient and returned home the
same day. Full ablation regimens may require lengthy hospital
stays and result in additional AEs23–27.

We demonstrated efficient LV-mediated gene transfer into
enriched Fabry patient CD34+ cells. VCN levels were modest,
minimizing the chance of genotoxicity. Our regimen led to
increased circulating and intracellular α-gal A activity. All
patients reached reference range levels. Values declined over time,
possibly due to an exhaustion of transduced short-term repopu-
lating HSPCs, but remained above what is typically observed in
Fabry patients and well above pretreatment levels in all five cases.
Whether the enzyme values reach an asymptote reflecting
engraftment of transduced long-term HSPCs remains to be
determined. VCN and α-gal A activities were well correlated,
underscoring the fidelity of our therapeutic LV construct. Patient
weight, eGFR, proteinuria and LVMI were stable for all patients

throughout the study period (ranging from 12-33 months post-
infusion), with the exception of Patient 2 who is showing
symptoms of chronic kidney disease associated with his Fabry
disease. Plasma lyso-Gb3 levels decreased in all patients with the
exception of Patient 4 where an increase was observed. Plasma
Gb3 levels were generally stable in all patients, except for increases
at later time points in Patients 2 and 3. Urine lyso-Gb3 values
were increased in Patient 1, stable in Patient 4, and decreased in
Patients 2, 3 and 5. Finally, urine Gb3 levels were stable in
Patients 2 and 5 who continued ET after gene therapy, but were
observed to increase in Patients 1, 3, and 4 who elected to
withdraw from their ET infusions. Interestingly, Patient 3 who
chose to stop ET prior to mobilization had sustained low levels of
plasma lyso-Gb3 and urine lyso-Gb3; a result of the gene therapy
product alone.

It is possible that a more myelo-suppressive conditioning
regimen would result in better engraftment of LV/AGA trans-
duced cells—although this hypothesis remains to be tested. In
selection of a partial myeloablative conditioning regimen, we
considered that our prospective patients were relatively healthy
males with Fabry disease who were receiving ET prior to
recruitment to our trial. Unlike most other acute disorders that
have been treated by gene therapy, Fabry disease is a chronic
disease. As such, our clinical team and our regulatory body were
reluctant to implement a full myeloablative conditioning regimen.

a b

c d

e

Fig. 4 Clinical parameters. Weight (a), estimated Glomerular Filtration Rate (eGFR) (b), urinary protein secretion (c), troponin (d), and Left Ventricular
Mass Index (LVMI) (e) was monitored during the course of the trial for all patients. eGFR was calculated using the Chronic Kidney Disease-Epidemiology
Collaboration formula. Values from Magnetic Resonance Imaging (MRI) and Echocardiography (ECHO) are shown for LVMI (e). Patient 3 did not attend all
cardiac assessments and has been omitted from Fig. 4e.
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Such protocols are more invasive, are accompanied by a greater
number of adverse events, and have the potential for future
oncogenic events. Likewise, infection of our target cells at a higher
MOI or multiple infection courses may also lead to higher
transgene expression; however, GMP-grade, recombinant LV was
already limiting in our trial.

Host immunity to ET is thought to limit therapeutic efficacy;
and, it is unknown whether gene therapy might exacerbate anti-
α-gal A antibody responses. Each of the three patients (Patients
3–5) who had pre-existing anti-enzyme IgG antibodies had nearly
complete elimination of titers after the gene therapy intervention
without resurgence of levels despite continuous enzyme exposure
from the transduced cell-derived source. Only one patient
(Patient 1) had an onset of antibody titer to enzyme, which
diminished over time. Two patients (Patients 2 and 5) remained
antibody titer negative after gene therapy. We conclude that gene
therapy is not only not highly immunogenic, but may also reduce
pre-existing immunity to foreign ET.

If successful, LV-mediated gene therapy may result in bene-
ficial outcomes for Fabry patients with a single treatment. No
serious safety concerns were observed in our pilot trial. All Fabry
patients in this study were responsive to the LV-mediated gene
therapy at some level. Three patients have discontinued ET to
date. Recipients had detectable levels of VCN in PB and BM,
plasma and leukocyte α-gal A-specific activity above or within the
reference range, and reductions in Gb3 and lyso-Gb3 levels. Gene
therapy may be an effective treatment option in patients with
Fabry disease but requires more study.

Methods
Patients. This multiple-center, single-arm, Phase 1 trial recruited patients from
Calgary, AB; Halifax, NS; and Toronto, ON; from September 2016–October 2018.
Prior to recruitment to this study, volunteers were screened and provided written
informed consent. All patients consented to the release of deidentified data in this
report. Patients were assigned a unique study identifier by Ozmosis Research Inc.

All data presented within this manuscript have deidentified each patient and
regional stem cell center. Recruitment (from September 2016 to October 2018) was
restricted to men (age 18–50) with confirmed Type 1 (classical) phenotype Fabry
disease (with GLA genotyping) who had received ET for at least 6 months prior to
study enrollment. Inclusion criteria comprised an estimated glomerular filtration
rate (eGFR), > 45 mL/min/1.73 m2 (chronic kidney disease-epidemiology colla-
boration equation [CKD-EPI]) and left ventricular ejection fraction >45%. Patients
with advanced Fabry disease were excluded. Additional eligibility criteria can be
found in Supplementary Table 3. Criteria for ET withdrawal is indicated in Sup-
plementary Table 4. The current version of the Health Canada-approved clinical
protocol can be accessed in the Supplementary Data.

Lentiviral vector. The LV-AGA vector has been described previously20. Large-
scale, high-titer clinical-grade, recombinant lentivector was manufactured, purified,
and qualified by the Indiana University Vector Production Facility, Indianapolis,
IN. A total of five patients were treated in this Phase I safety trial due to the
quantity of the lentiviral vector produced for this study.

Study design. Patients were recruited to three regional hematopoietic stem cell
centers (Calgary, AB; Toronto, ON; and Halifax, NS). All steps of mobilization,
apheresis, conditioning, and transplantation occurred at the relevant site for each
patient. Patients were initially mobilized with filgrastim (granulocyte-colony sti-
mulating factor [G-CSF] 16 µg/kg). If peripheral blood CD34+ counts were low
(i.e., if the predicted CD34+ count was <50% of our target of 12.5 × 106/kg),
filgrastim was supplemented with plerixafor (240 µg/kg). Three patients were
mobilized with filgrastim and plerixafor; for one patient this occurred because of a
site preference for this regimen. A backup graft of at least 2.5 × 106 unmanipulated
CD34+ cells/kg was harvested from each patient for utilization in the event of graft
failure. After apheresis, the nucleated cells were transported to the Juravinski
Cancer Centre, Hamilton, ON, for CD34+ cell enrichment. Cells were then
transported to the Orsino Cell Processing Laboratory, Princess Margaret Cancer
Centre, Toronto, ON, for the lentiviral transductions. The transduction protocol
was described in detail20. Quality control was performed: cell viability, evaluation
of α-gal A activity in the transduced CD34+ cell population, and VCN were
evaluated. After cryopreservation and safety/sterility testing, and an approved
Certificate of Analysis from Health Canada, the drug product was transported back
to the stem cell center of origin. Patients received melphalan (100 mg/m2) intra-
venously one day prior to autologous drug product infusion (Fig. 1). After we
observed prolonged α-gal A activity in both leukocytes and plasma of Patient 1, the
protocol was amended to allow patients to discontinue ET after an appropriate
consultation/consent procedure. All patients are eligible to discontinue ET, and
three patients have elected to stop ET at time of manuscript submission.

Safety and functional efficacy assessments. Safety endpoints included reporting
of adverse events (AEs) and serious adverse events (SAEs), scored by the National
Cancer Institute Common Terminology Criteria for Adverse Events version 4.03.
Analysis of drug product efficacy included the detection of plasma, leukocyte, and
BM mononuclear cell (BMMC) α-gal A activity20,28,29; analysis of Gb3 and lyso-
Gb3 from plasma and urine by tandem mass spectrometry (MS/MS)30–32; presence
and persistence of LV marked cells in PB20; transduced drug product and BM
HSPC as measured by colony polymerase chain reaction (PCR) assay20; anti-α-gal
IgG antibody levels measured by enzyme-linked immunosorbent assay (ELISA)
(modified from Lee)33; clinical outcomes; and detection of VCN. The primers
utilized for quantitative PCR are illustrated in Supplementary Table 5. All PB
enzyme activities were measured in the trough period more than 10 days after ET
administration and during the 60 days bracketing the infusion of transduced cells
when ET was stopped. The reference ranges for plasma α-gal A activity and leu-
kocyte α-gal A specific activity were defined by London Health Sciences Centre
Clinical Biochemical Genetics Laboratory based on 150 specimens referred for
diagnostic testing. Cardiac echocardiograms and magnetic resonance imaging was
performed as described34.

Study oversight. The trial (NCT02800070, Health Canada-approved April 26,
2016) was conducted in compliance with the Declaration of Helsinki and local
institutional and/or university Human Experimentation Committee requirements.
Research Ethics Board (REB) approval was provided by University Health Network
Research Ethics Board, Alberta Health Services Research Ethics Board, Capital
Health Services Research Ethics Board, Hamilton Integrated Research Ethics and
the Medical College of Wisconsin Institutional Review Board. This study was
designed by the Fabry Disease Clinical Research and Therapeutics (FACTs) team.
Clinical trial management was performed by Ozmosis Research, Inc., of Toronto,
Canada. Clinical data were collected by the investigators of the FACTs team who
were responsible for clinical assessments during the Treatment Phase and long-
term follow-up. Clinical and laboratory data were reviewed monthly by the FACTs
team. Clinical decisions and safety monitoring for each patient were completed by
a Clinical Trial Steering Committee (CTSC) of the FACTs team. Safety review
meetings were conducted by the CTSC 1 month after the transplant date for each
patient. The next patient was then eligible for recruitment to the study only after
the CTSC reviewed all of the safety data and unanimously concluded that there

Fig. 5 Immunoglobulin G (IgG) antibody titer. Enzyme-Linked
Immunosorbent Assays (ELISA) were completed at each time point as
shown. In four patients who had detectable anti- α-galactosidase A (α-gal
A) antibodies, levels declined in three patients and rose in one patient,
although the titers never reached the levels of a positive control sample
collected following enzyme therapy (ET). Red arrow is at Day −30 when ET
was stopped prior to mobilization. Green arrow is at Day 30 when ET was
restarted for Patients 1, 2, 4, and 5. The orange arrow demarks when Patient
4 stopped ET at Day 214 and the blue arrow is when Patient 1 stopped ET at
Day 548. Patient 3 chose not to restart ET.
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have been no treatment-related serious adverse events. A Data Monitoring Safety
Committee (DSMC) reviewed clinical and safety data after the Treatment Phase for
Patients 1 and 3. Interim analysis and publication of this clinical trial was
authorised by the DSMC. As this is the first lentivirus-directed gene therapy trial to
focus on adults with a lysosomal storage disorder, the DSMC supported reporting
of safety data up to 1-year post-infusion of each patient.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request. Source data are provided with
this paper.
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