745 research outputs found

    Operating manual for the RRL 8 channel data logger

    Get PDF
    A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape

    Observation of highly decoupled conductivity in protic ionic conductors

    Get PDF
    YesIonic liquids (ILs) are key materials for the development of a wide range of emerging technologies. Protic ionic liquids, an important class of ILs, have long been envisioned as promising anhydrous electrolytes for fuel cells. It is well known that in comparison to all other cations, protons exhibit abnormally high conductivity in water. Such superprotonic dynamics was expected in protic ionic conductors as well. However, many years of extensive studies led to the disappointing conclusion that this is not the case and most protic ionic liquids display subionic behavior. Therefore, the relatively low conductivity seems to be the main obstacle for the application of protic ionic liquids in fuel cells. Using dielectric spectroscopy, herein we report the observation of highly decoupled conductivity in a newly synthesized protic ionic conductor. We show that its proton transport is strongly decoupled from the structural relaxation, in terms of both temperature dependence and characteristic rates. This finding offers a fresh look on the charge transport mechanism in PILs and also provides new ideas for design of anhydrous materials with exceptionally high proton conductivity.National Science Centre within the framework of the Opus project (Grant No. DEC 2011/03/B/ST3/02072). Financial assistance from FNP START. The LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U.S. DOE. Support from the NSF under grant CHE-1213444

    Heat induced evaporative antisolvent nanoprecipitation (HIEAN) of itraconazole

    Get PDF
    YesItraconazole (ITR) is an antifungal drug with a limited bioavailability due to its poor aqueous solubility. In this study, ITR was used to investigate the impact of nanonisation and solid state change on drug’s apparent solubility and dissolution. A bottom up approach to the production of amorphous ITR nanoparticles (NPs), composed of 100% drug, with a particle diameter below 250 nm, using heat induced evaporative antisolvent nanoprecipitation (HIEAN) from acetone was developed. The NPs demonstrated improved solubility and dissolution in simulated gastrointestinal conditions when compared to amorphous ITR microparticles. NPs produced with polyethylene glycol (PEG) or its methoxylated derivative (MPEG) as a stabiliser enabled the production of smaller NPs with narrower particle size distribution and enhanced apparent solubility. MPEG stabilised NPs gave the greatest ITR supersaturation levels (up to 11.6 ± 0.5 μg/ml) in simulated gastric fluids. The stabilising polymer was in an amorphous state. Dynamic vapour sorption data indicated no solid state changes in NP samples with water vapour at 25 °C, while crystallisation was apparent at 50 °C. HIEAN proved to be an efficient method of production of amorphous ITR NPs, with or without addition of a polymeric stabiliser, with enhanced pharmaceutical properties.Libyan Ministry of Higher Education and Scientific Research through the Libyan Embassy, London and supported by the Science Foundation Ireland under Grant No. 12/RC/2275 (Synthesis and Solid State Pharmaceuticals Centre)

    Impact of process variables on the micromeritic and physicochemical properties of spray-dried porous microparticles, part I: introduction of a new morphology classification system

    Get PDF
    YesObjectives This work investigated the impact of spray drying variables such as feedconcentration, solvent composition and the drying mode, on the micromeriticproperties of chlorothiazide sodium (CTZNa) and chlorothiazide potassium(CTZK).Methods Microparticles were prepared by spray drying and characterised usingthermal analysis, helium pycnometry, laser diffraction, specific surface area analysisand scanning electron microscopy.Key findings Microparticles produced under different process conditions pre-sented several types of morphology.To systematise the description of morphology ofmicroparticles, a novel morphology classification system was introduced. The shapeof the microparticles was described as spherical (1) or irregular (2) and the surfacewas classified as smooth (A) or crumpled (B). Three classes of morphology of micro-particles were discerned visually: class I, non-porous; classes II and III, comprisingdiffering types of porosity characteristics. The interior was categorised as solid/continuous (a), hollow (b), unknown (g) and hollow with microparticulate content(d). Nanoporous microparticles of CTZNa and CTZK, produced without recircula-tion of the drying gas, had the largest specific surface area of 72.3 and 90.2 m2/g,respectively, and presented morphology of class 1BIIIa.Conclusions Alteration of spray drying process variables, particularly solvent com-position and feed concentration can have a significant effect on the morphology ofspray dried microparticulate products. Morphology of spray dried particles may beusefully described using the morphology classification system.The Irish Research Council for Science and Engineering Technology (IRCSET), the Solid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under grant number [07/SRC/B1158] and the Irish Drug Delivery Research Network, a Strategic Research Cluster grant (07/SRC/B1154) under the National Development Plan co-funded by EU Structural Funds and Science Foundation Ireland

    Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles, part II: physicochemical characterisation of spray-dried materials

    Get PDF
    YesObjectives  In this work we investigated the residual organic solvent content and physicochemical properties of spray-dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods  The powders were characterised by thermal, X-ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography. Key findings  Spray-drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray-dried product. Spray-drying in the open blowing mode coupled with secondary drying resulted in a three-fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray-drying in the closed mode. Conclusions  Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray-dried product.The Irish Research Council for Science and Engineering Technology (IRCSET), the Solid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under grant number (07/SRC/B1158) and the Irish Drug Delivery Research Network, a Strategic Research Cluster grant (07/SRC/B1154) under the National Development Plan co-funded by EU Structural Funds and Science Foundation Ireland

    A novel approach to crystallisation of nanodispersible microparticles by spray drying for improved tabletability

    Get PDF
    YesHigh-dose API powders which are to be tableted by direct compression should have high compactibility and compressibility. This note reports on a novel approach to the manufacture of crystalline powders intended for direct compaction with improved compactibility and compressibility properties. The poorly compactable API, chlorothiazide, was spray dried from a water/acetone solvent mix producing additive-free nanocrystalline microparticles (NCMPs) of median particle size 3.5 μm. Tablets compacted from NCMPs had tensile strengths ranging from 0.5 to 4.6 MPa (compared to 0.6–0.9 MPa for tablets of micronised CTZ) at compression forces ranging from 6 kN to 13 kN. NCMP tablets also had high porosities (34–20%) and large specific surface areas (4.4–4.8 m2/g). The time taken for tablets made of NCMPs to erode was not statistically longer (p > 0.05) than for tablets made of micronised CTZ. Fragmentation of NCMPs on compression was observed. The volume fraction of particles below 1 μm present in the suspension recovered after erosion of NCMP tablets was 34.8 ± 3.43%, while no nanosized particles were detected in the slurry after erosion of compacted micronised CTZ.Solid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under grant number 07/SRC/B1158

    Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability

    Get PDF
    YesIn order to investigate the effect of using different solid state forms and specific surface area (TBET) of active pharmaceutical ingredients on tabletability and dissolution performance, the mono- and dihydrated crystalline forms of chlorothiazide sodium and chlorothiazide potassium (CTZK) salts were compared to alternative anhydrous and amorphous forms, as well as to amorphous microparticles of chlorothiazide sodium and potassium which were produced by spray drying and had a large specific surface area. The tablet hardness and tensile strength, porosity, and specific surface area of single-component, convex tablets prepared at different compression pressures were characterized. Results confirmed the complexity of the compressibility mechanisms. In general it may be concluded that factors such as solid-state form (crystalline vs amorphous), type of hydration (presence of interstitial molecules of water, dehydrates), or specific surface area of the material have a direct impact on the tabletability of the powder. It was observed that, for powders of the same solid state form, those with a larger specific surface area compacted well, and better than powders of a lower surface area, even at relatively low compression pressures. Compacts prepared at lower compression pressures from high surface area porous microparticles presented the shortest times to dissolve, when compared with compacts made of equivalent materials, which had to be compressed at higher compression pressures in order to obtain satisfactory compacts. Therefore, materials composed of nanoparticulate microparticles (NPMPs) may be considered as suitable for direct compaction and possibly for inclusion in tablet formulations as bulking agents, APIs, carriers, or binders due to their good compactibility performanceSolid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under Grant No. 07/SRC/B1158
    • …
    corecore