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Abstract 

This work investigates the impact of spray drying (SD) variables such as feed concentration, solvent 
composition and the drying mode, on the micromeritic properties of chlorothiazide sodium 
(CTZNa) and potassium (CTZK). Microparticles (MPs) were prepared using a Büchi B-290 and 
characterised using thermal analysis, helium pycnometry, laser diffraction, specific surface area 
(TBET) analysis and scanning electron microscopy. 
MPs produced under different process conditions presented several types of morphology. To 
systematise the description of morphology of MPs, a novel Morphology Classification System 
(MCS) was introduced. The shape of MPs was described as spherical-1 or irregular-2 and the 
surface was classified as smooth-A or crumpled-B. Three classes of morphologies of MPs were 
discerned visually: Class-I (nonporous) and classes II and III comprising differing types of porosity 
characteristics. The interior was categorised as solid-continuous-α, hollow-β, unknown-γ and 
hollow with microparticulate content-δ. NPMPs of CTZNa and CTZK, produced without 
recirculation of the drying gas, had the largest TBET of 72.3 m2/g and 90.2 m2/g, respectively, and 
presented morphology of class 1BIIIα. Alteration of spray drying process variables, particularly 
solvent composition and feed concentration can have a significant effect on the morphologies of the 
spray dried microparticulate products. Morphology may be usefully described using the MCS. 
 

Keywords: spray drying, morphology, solvent, specific surface area, amorphous, nanoporous 

microparticles 
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1. Introduction  

Particles characterised by a porous morphology have been reported to have advantageous 

properties over non-porous materials when formulated in a variety of dosage forms1-3. Porous 

materials with a large surface area usually present favourable compaction properties4. Thus large 

surface area/porous materials may be considered to be useful as binders in tablet formulations.  

Materials with large specific surface areas and porosity may also be used as efficient carriers for 

liquids5. It was reported that rapidly dissolving tablets containing a solid dispersion of indomethacin 

and porous silica particles produced by co-spray drying presented favourable dissolution properties 

over tablets prepared from physical mixtures of indomethacin and porous silica6.  

The production of excipient -free nanoporous microparticles (NPMPs) by spray drying from 

solutions was first reported for the hydrophobic active pharmaceutical ingredient (API), 

bendroflumethiazide7. Budesonide NPMPs for pulmonary delivery, were subsequently reported to 

have a large specific surface area (10.5 m2/g)8. The preparation of NPMPs of hydrophilic materials, 

for example carriers of raffinose and trehalose has also been described9, where the largest specific 

surface area, measured for both sugars, was approximately 44 m2/g. The largest specific surface 

area of any NPMP system reported to date was for another hydrophilic material, sodium 

cromoglicate, and was 98 m2/g 3.  

The above studies presented that the feed formulation and process conditions dictated the 

particle morphologies and these in turn were related to the functional properties of the NPMPs 3, 8-

10. An attempt to classify the possible modes of particle formation during solvent evaporation was 

presented previously11. This classification was based on the ability of a compound to crystallise and 

two major modes of particle formation were presented: one with distinct crystal habit and one 

without strong crystal habit. Another categorisation of morphologies of spray dried particles12 

distinguished three morphological types of particulates: agglomerate, skin-forming and crystalline. 

Inorganic materials were typically found to be crystalline and organics were mainly classed as skin-
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forming. The study, unfortunately, did not include organic APIs. More recently a classification of 

morphological types of microparticles has been presented, which was not only to be applied to 

spray dried systems13. The microparticles were divided into those with a core, those with cellular 

structure, particles with embedded nanoparticles and composite shell as well as irregular with 

external voids and internal composition gradient. This classification, however, is difficult to apply 

when a thorough and systematic evaluation of porous particles is needed.  

The goal of this work was therefore to systematise the description of the morphology of 

spray dried materials in general by introducing a novel morphology classification system (MCS) 

using four simple descriptors such as shape, surface properties, visual morphology and interior of 

the particle. Hydrophilic chlorothiazide sodium (CTZNa)14 and potassium (CTZK)15 were chosen as 

model compounds, on the basis of previous studies3, 9, which indicated that porous microparticles of 

CTZNa and CTZK should be possible to obtain by spray drying from methanol/butyl acetate mixes. 

The studies entailed changing the feed concentration, methanol/butyl acetate solvent ratio and spray 

drying mode to methodically assess the impact of the various factors on morphology and other 

micromeritic properties including surface area of the NPMPs produced. 
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2. Materials and methods  

2.1. Materials 

Materials used in experiments were chlorothiazide (CTZ), potassium bromide (KBr, FT-IR grade) 

and PurpaldTM (Sigma Ireland), sodium hydroxide (NaOH, Riedel de Haën Germany), potassium 

hydroxide (KOH, Merck Germany). Solvents and other reagents: deionised water (Purite Prestige 

Analyst HP, Purite Limited, UK), acetone and ethanol (Corcoran Chemicals, Ireland), methanol and 

formic acid (Sigma, Ireland), n-propanol and ethyl acetate (Lab Scan, Ireland), butyl acetate 

(Merck, Germany), acetic acid, hydrogen peroxide, Hydranal-Composite and hydrochloric acid 

32% (Riedel de Haën, Germany), nitric acid (BDH, UK), acetonitrile (Fischer Scientific, Ireland), 

sodium dihydrogen phosphate (Sigma-Aldrich, Ireland), phosphorus pentoxide desiccant (Fluka, 

Ireland). 

 

2.2. Methods 

2.2.1. Salts preparation 

Chlorothiazide sodium (CTZNa DH) and potassium (CTZK DH) dihydrate and anhydrous CTZNa 

were obtained as previously described14, 15. Anhydrous CTZK was obtained by spray drying of 

CTZK DH from water and secondary tray drying at 170 ˚C for 3 hours in an oven (Memmert UL 

40, Germany).  

 

2.2.2. Spray drying  

Spray drying was performed using a Büchi B-290 Mini Spray Dryer (Büchi, Switzerland). An inert 

loop Büchi B-295 (for organic solvents) and additionally a dehumidifier Büchi B-296 (for 

water/organic solvent mixtures) were used for the closed mode operation. The spray dryer, 

depending on the sample, was used either in a closed mode with recirculation of nitrogen as the 

drying and nozzle gas or as an open system with nitrogen (open, suction mode) or in a mixed mode 
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where compressed nitrogen was used to atomise the solution but air was used as the drying gas 

(open, blowing mode). A standard atomization nozzle with a 1.5 mm cap and 0.7 mm tip was 

employed for each sample. The drying gas pressure of 6 bar at 4 cm gas flow (rotameter setting), 

equivalent to 473 norm litres per hour (nL/h) of gas flow in normal conditions (p=1013.25 mbar 

and T=273.15 K)16.  The nozzle pressure drop was measured to be 0.41 bar. The pump speed was 

set to 30% (9-10 ml/min) and the aspirator was operated at 100%. Other conditions varied 

depending on the system spray dried and are summarised in Table 1.  

The additional, secondary drying (AD) was performed in an incubator with forced air flow 

(Gallencamp economy incubator with fan, Weiss-Gallencamp, UK), using the same temperature as 

that of the outlet spray drying temperature for 12 hours for samples #19 and #20 (later referred to as 

#19* and #20*).    

 

2.2.3. Physicochemical characterisation  

Differential scanning calorimetry (DSC) and thermogravimetric (TGA) analyses were 

performed using a Mettler Toledo DSC 821e and Mettler TG 50 module. Three measurements were 

carried out in vented aluminum pans, at a heating/cooling rate of 10 ˚C/min, under nitrogen purge14.  

True density was measured using helium (99.995% purity) AccuPyc 1330 Pycnometer 

MicromeriticsTM, presented results are an average of three measurements15. To image particles, a 

Mira Variable Pressure Field Emission Scanning Electron Microscope (SEM)15 was used. 

Measurements of particle size and particle size distributions were obtained using a laser diffraction 

particle sizer Mastersizer 2000 (Malvern Instruments, UK). Particles were dispersed using a 

Scirocco dry feeder instrument with 2 bar pressure. An obscuration rate of 0.5-6% was obtained 

under a vibration feed rate of 50%, results reported are the average of three analyses17. To 

determine the bulk specific surface area (TBET) by Brunauer, Emmett, Teller (BET) isotherm a 

Micromeritics Gemini VI (USA) surface area analyzer was used. Each average result is calculated 
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on base of three measurements consisted of six steps, determining the amount of nitrogen adsorbed 

at 6 relative pressure points in the range of 0.05 to 0.3 of relative pressure P/P0 with equilibration 

time of 10 s (free space was determined separately for each sample using helium gas, saturation 

pressure Po was determined prior to the measurement of each sample). Powder XRD (PXRD) 

analysis was conducted using a Miniflex II Desktop X-ray diffractometer. The tube output voltage 

used was 30 kV and tube output current was 15 mA. A Cu-tube with Ni-filter suppressing Kβ 

radiation was used. Measurements were taken from 5 to 40 on the 2 theta scale at a step size of 

0.05˚ per second in each case. Scans were performed at room temperature15.  

 

2.2.4. Statistical analysis 

Statistical analysis for the specific surface area (n=3), median particle size (n=3) and true density 

(n=3) data was carried out using the Minitab software. The Kruskal-Wallis test was carried out at a 

significance level of 0.05, with a p-value of less than 0.05 indicating that the observed difference 

between the means was statistically significant. 
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3. Results and discussion  

 

3.1. Morphology and micromeritic properties of spray dried CTZNa and CTZK 

All spray drying conditions employed for CTZNa and CTZK (Table 1) rendered PXRD 

amorphous materials, which was confirmed using DSC analysis19. Different morphologies of the 

spray dried particles were observed when spray drying conditions and solvent type were varied 

(Fig.1). Therefore, to facilitate the description of the different appearances, a morphology 

classification system (MCS) (Table 2) for spray dried compounds was developed. Firstly, the 

system introduces a code describing the shape of particles: 1 for predominantly spherical and 2 for 

irregular/non-spherical shape of particles. The second symbol indicates the surface description: A 

for smooth surface particle and B for crumpled particles. In the third place MCS describes the class 

of visual morphology with three different variants: I (nonporous), II (porous with nano-sized pores) 

and III (conglomerates of nanoparticles). The last symbol describes the interior of the particles and 

it is possible to distinguish: α for solid/continuous, β for hollow, γ for unknown and δ for hollow 

with nanoparticulate content.  Examples of the various morphologies are presented in Table 3.  

 

3.1.1 Spray drying from water 

CTZNa (Fig. 1a) and CTZK (Fig. 1b) materials spray dried from water consisted of 

microparticles which were spherical in shape. CTZNa microparticles had smooth surfaces classified 

as 1AIα (Table 2, 3), while CTZK particles had a slightly crumpled morphology classified as 1BIα 

(Table 2). Imaging of spray dried samples #1 and #2, after grinding in an agate mortar revealed 

interiors of microparticles to be solid (Fig. 1 c, d). The difference in morphology may be attributed 

to difference in Tg between CTZK and CTZNa ~159 ˚C and ~192 ˚C respectively. In contact with 

residual water during final droplet solidification it is possible that CTZK develops higher degree of 

plasticity, reflected in the lower Tg of this material comparing to CTZNa. It has been reported that 



 8 

materials with lower Tgs have a higher tendency to crumpling19 due to plasticisation effect20. The 

crumpling in this case is not related to the saturation of the API in the solution feed13 since the 

aqueous solubilities of both salts are very similar14, 15. 

The true density of amorphous CTZNa microparticles (Table 4. #1) was 1.837±0.015 g/cm3. 

The specific surface area by BET was 1.31±0.02 m2/g and the median particle size (d(50)) by laser 

diffraction was 2.6±0.1 µm. The true density of amorphous CTZK microparticles (Table 3. #2) was 

1.872±0.003 g/cm3, similar to that of CTZNa. The crumpled morphology of CTZK particles did not 

result in a change of specific surface area of the powder. It was measured to be 1.34±0.03 m2/g, the 

same as for sample #1. The median particle size of CTZK of 3.1±0.1 µm was slightly larger than 

that of CTZNa. 

 

3.1.2. Spray drying from BA/MeOH systems 

Different morphologies of the processed CTZNa were observed with a change in the 

MeOH/BA solvent ratio (Fig. 1. samples #3.-#9.). The change in morphology was reflected in the 

increased surface area of these powders (Table 4). Sample #10 spray dried from 100% methanol (a 

mix of particles of type 1AIβ and 1BIβ of MCS) had the smallest specific surface area (of those 

samples spray dried from non-aqueous solvents) of about 3.65±0.07 m2/g and it did not form porous 

particles (Fig. 1. l sample #10). The specific surface area of sample #10 was three times larger than 

that of sample #1 spray dried from pure water, most likely due to slight crumpling and lower 

particle size (Table 4). 

The porosity of particles did not impact on the particle size. For example, sample #10 spray 

dried from 100% MeOH and CTZNa spray dried from a MeOH/BA 1:1 v/v mixture (#5, 1BIIα of 

MCS) had similar median particle sizes of 1.6 and 1.7 µm, respectively. Overall, the median 

particle sizes for the CTZNa powders varied between 1.7 and 3.4 µm (Table 4). 
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The specific surface area by BET of the processed samples #1-10 showed that the largest 

surface area was determined for sample #6 (dried from a 3:2 v/v MeOH/BA mix) followed by 

sample #7 spray dried from a 7:3 v/v MeOH/BA solution with only a slightly, but significantly 

lower surface area (Table 4). Samples #6 and #7 presented morphology type of 1BIIγ of the MCS. 

The smallest surface areas were measured for samples #9 and #10 spray dried from a 1:4 v/v 

MeOH/BA solvent mix and from pure methanol, respectively (Table 4). The particles of sample #9 

were non-spherical, resembling shattered hollow and porous shells (Fig. 1k.) classified as 2AIα, 

while sample #10 was made of spherical but crumpled (1BIβ) and smooth (1AIβ) particles. A 

concentration of at least 20% v/v of BA was found to be critical for the formation of porous 

particles (Fig. 1j, #8, 2BIIα). True density of the sample spray dried from methanol (#10) was 

significantly lower than the density of any CTZNa sample spray dried from mixed solvent systems 

(Table 4).  

The feed solvent composition which resulted in the largest surface area for CTZNa was also 

used to spray dry CTZK. Anhydrous CTZK at 0.5% w/v concentration was spray dried in the same 

conditions as those used for sample #6 from a 3:2 v/v MeOH/BA solvent system (#11). Particles of 

#11 were spherical and porous with similar morphologies to sample #6 classified as 1BIIγ of MCS 

(Fig. 1h). BET analysis of the spray dried material determined a specific surface area  

of 57.2±0.5 m2/g. The median particle size was 2.0±0.1 µm while the measured true density was 

1.862±0.004g/cm3, slightly lower in comparison to sample #2 spray dried from water. 

 

3.2. Effect of feed concentration and spray dryer configuration on particle morphology  

The production of NPMPs from a solution containing 0.5% w/v of solids resulted in only 50 

to 60% of the recovered dry material (with 1 g in the feed). An increase in the batch size to 10 g and 

higher required production yields greater than 60%. Low yield values would result in the loss of 

large amounts of processed material and clogging of the filter. One of the most important process 
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parameters, impacting directly on the production yield is the feed concentration19. Therefore the 

feed concentration was increased to the highest possible concentration not resulting in precipitation 

of the solid during feed preparation in ambient conditions. Experimentally this was established to be 

2% w/v of anhydrous CTZNa or CTZK in MeOH. The content of BA was such that it did not result 

in precipitation of the API during processing (samples #12-#20). By increasing the feed 

concentration the production yield was increased to 75-80%. The change in feed concentration 

resulted in a decrease in TBET of the spray dried CTZNa from 66.2±0.2 m2/g (sample #6) to 

approximately 42.6±0.4 m2/g (sample #15, 2BIIα) when spray dried from 2% w/v solutions  

(Table 5). Readjustment of the optimal MeOH/BA ratio was thus required. 

 

3.3. Postulated mechanism of NPMPs formation   

It was postulated that, with an increased concentration of solute in the solvent/antisolvent 

mixture, in order to obtain the largest possible surface area, the proportion of the anti-solvent (BA) 

should be increased. The solid dissolved in the solvent/antisolvent mixture, due to solvent 

evaporation, starts to precipitate in the liquid environment (Fig. 2. 1a and 2 a). Preferential 

evaporation of MeOH (the solvent with the higher vapour pressure) results in spontaneous phase 

separation of nanoparticlulates suspended in the solvent mixture (Fig. 2. 1b and 2b). The 

nanoparticles grow until separation of the solid from the solvent mix is complete (Fig. 2. 2c). 

Finally, due to evaporation of excess solvents, microconglomerates of nanoparticles are formed, 

described as morphology of type III (Fig. 2. 2d). Alternatively, if the volume of excess solvents is 

low, nanoparticles merge during growth (Fig. 2. 1c) prior to final separation of solid and final 

evaporation of solvents, forming morphology of type II (Fig. 2. 1d).  

By changing only the proportion of the solvents, the greatest porosity  

and specific surface area was obtained for the material spray dried in the closed mode from 3:7 v/v 

MeOH/BA mixture - sample #12 (Table 5) classified as 1BIIIα. For this sample, the change in 
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concentration of the solid in the feed from 0.5% to 2.0% altered remarkably the class of 

morphology from a mix of I and II (sample #3) to class III.  

In general, increasing the ratio of MeOH:BA resulted in a reduction of porosity (as assessed 

from SEM). Material obtained using a  MeOH/BA ratio of 7:3 (sample: #16) resulted in a 

morphology of type 2BIIα, while a  4:1 v/v MeOH/BA ratio (sample #17) gave a morphology of 

class 1AIδ (Fig. 3). The sample spray dried from the MeOH/BA 3:2 v/v mix (#15, 2BIIα) resulted 

in a larger surface area than that spray dried from MeOH/BA 1:1 v/v (#14, 1BIIIα). An SEM image 

of #15 (2BIIα) showed visually reduced porosity (class II of MCS) in comparison to sample #14 

(Fig. 3- class III). Most likely the difference in TBET was related to the non-spherical shape of the 

particles (class 2 of MCS) constituting systems #15 while #14 remained spherical belonging to class 

1 of MCS.  

 The 3:7 v/v MeOH/BA solvent composition resulted in specific surface area values  

of 52.6±0.3 m2/g and 72.0±0.6 m2/g for CTZNa (sample #12- 1BIIIα) and CTZK (sample #18- 

1BIIIα), respectively. Attempts to spray dry CTZK form I (monohydrate)15 from the 3:7 v/v 

MeOH/BA mixture resulted in only a 1% w/v feed concentration being achieved and a decreased 

surface area (of 33.5±0.3 m2/g) when compared to sample #18.  

Further process modification included changing the mode of the spray dryer from the closed 

to the open, blowing system to ascertain the feasibility of processing in a configuration similar to 

that used on an industrial scale22 . This modification resulted in a further substantial improvement in 

the production yields to 90-95% (samples #19 and #20, both classified as 1BIIIα). An additional 

increase in specific surface area of the materials to 72.3±0.7 and 90.2±0.9 m2/g for CTZNa (sample 

#19) and CTZK (sample #20), respectively, was also seen (Table 5, Fig. 4. I).    

 Figure 4 II presents the relationship between d(50) diameter of the particles and changing 

concentration of methanol in MeOH/BA mixtures for materials spray dried from two concentrations 

0.5% w/v and 2.0% w/v. The diameters of the particles spray dried from the 2.0% w/v solutions are 
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about 1.4 times larger than of those spray dried from 0.5% w/v concentration (a 4-fold difference in 

concentration). This 1.4-fold difference is close to the theoretical ratio of 1.66 for a 4-fold increase 

in the initial feed concentration assuming that the particles are solid. It can be seen from figure 4 II 

that the d(50) diameter for sample #9 is significantly larger compared with diameters of other 

samples spray dried from the 0.5% w/v feed. For the samples (#12-#17) spray dried from the initial 

feed concentration of 2.0% w/v a difference in d(50) is statistically significant comparing with the 

equivalent samples spray dried from 0.5% w/v solutions (#3-#8). The Span values ranged from 1.2 

to 1.9 and were, in general, smaller for the samples processed from 0.5% w/v solutions in 

comparison to the 2% w/v systems. 

To calculate the diameter of a particle with the same TBET as that measured for the powder, 

but assuming the non-porous nature of that particle, the concept of densest regular packing of 

spheres, assuming that the maximal degree of packing is 0.74 23 and the inverse relationship 

between the surface area and the radius24 of the sphere were employed. The estimated particle 

diameters (ΦTBET) are presented in tables 4 and 5. They corresponded well to the median particle 

sizes obtained from laser diffraction for nonporous samples (#1, 2 and 10) and gave a probable 

estimation of size of nanoparticulates constituting the NPMPs. The smallest ΦTBET was estimated 

for sample #20, where the average diameter of nanoparticles forming the NPMPs was 

approximately 49 nm; this sample also had the greatest TBET.  
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4. Conclusions  

The novel Morphology Classification System of spray dried particles (MCS) developed was 

an efficient tool for morphology characterisation.  

Spray drying is an effective method for producing amorphous MPs and NPMPs of 

chlorothiazide sodium and potassium salts (CTZNa and CTZK).  Morphology of MPs was 

determined to be dependent on the type (water versus MeOH and MeOH/BA) and the ratio of 

solvents (MeOH/BA) used, the concentration of solid in the spray drying feed and the spray drying 

mode.  

Samples spray dried from 0.5% w/v feed concentration comprised NPMPs mainly with 

morphology of class II. The use of 2% w/v feed concentration resulted in NPMPs with 

morphologies of class II and III. The particles spray dried form water had morphologies of type 

1AIα and 1BIα for CTZK and CTZNa, respectively. The development of the different morphologies 

(A and B) for the aqueous samples was attributed to the different Tgs of the amorphous compounds 

(CTZNa: ~192 ˚C, CTZK: ~160 ˚C). NPMPs with specific surface areas of 72 m2/g and 90 m2/g for 

CTZNa and CTZK, 1BIIIα of MCS respectively, were obtained with satisfactory yields (~90-95%) 

by spray drying from 2% w/v feed and a MeOH/BA (3:7 v/v) mixture. NPMPs with the largest 

specific surface areas presented morphology type III.  
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 i)  j) 
 

 k)  l)   
 

Fig. 1. SEM of CTZNa and CTZK spray dried samples: a) sample #1 (1AIα), b) sample #2 (1BIα), 

c) ground sample #1, d) ground sample #2 e) sample #3 (1BIα+1BIIα), f) sample #4 (1BIIα), g) 

sample #5 (1BIIα), h) sample #6 (1BIIγ), i) sample #7 (1BIIγ), j) sample #8 (2BIIα), k) sample #9 

(2AIα) and l) sample #10 (1AIβ+1BIβ).  
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Fig. 2. Schematic formation of nanoporous microparticles. 1. Morphology of type II. 2. Morphology 

of type III. 1a, 2a- Droplet stage, 1b, 2b- Separation of solid phase (black), 1c- Bridging stage 

(bridging of nanoparticles due to further solid precipitation). 2c- Suspension stage  (nanoparticles in 

a solvents mix), 1d- Evaporation stage- final evaporation of solvents. 2d- Microconglomeration 

stage- final evaporation of solvents and consolidation of nanoparticles. The brightening gradient of 

blue colour reflects a decrease in concentration of the solids in volume of solvents mix until final 

evaporation of excess of solvents mix- white voids remaining. 
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a) b) 

c) d) 

e) f) 

g) h) 
 

Fig. 3. SEM of CTZNa spray dried systems: a) sample #12 (1BIIIα), b) sample #13 (2BIIIα), c) 

sample #14 (1BIIIα), d) sample #15 (2BIIα), e) sample #16 (2BIIα) and f) sample #17 (1AIδ), g) 

sample #19 and h) sample #20, both 1BIIIα.  
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Fig. 4. I- Specific surface area TBET and II- median particle size of CTZNa samples spray dried 

from different methanol concentrations. 
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Table 1. Spray drying conditions for CTZNa and CTZK samples. CMeOH is the concentration of 

MeOH in the MeOH/BA solvent mixture. 

Sample  
(No #) Solvent system CMeOH 

(%v/v) 

Feed 
conc. 

(% w/v) 

Inlet 
temp 
(˚C) 

Outlet temp 
(˚C) Mode* 

 
#1. CTZNa  Water - 2.0 160 99 OM-S 
#2. CTZK Water - 2.0 160 101 OM-S 
 
#3. CTZNa MeOH/BA 30 0.5 120 87 CM 
#4. CTZNa  MeOH/BA  40 0.5 120 92 CM 
#5. CTZNa MeOH/BA 50 0.5 120 97 CM 
#6. CTZNa MeOH/BA 60 0.5 120 98 CM 
#7. CTZNa MeOH/BA 70 0.5 120 98 CM 
#8. CTZNa MeOH/BA 80 0.5 120 98 CM 
#9. CTZNa MeOH/BA 90 0.5 120 99 CM 
#10. CTZNa MeOH 100 0.5 80,100 75,87 CM 

 
#11. CTZK MeOH/BA 60 0.5 120 97 CM 

 
#12. CTZNa MeOH/BA 30 2.0 120 98 CM 
#13. CTZNa MeOH/BA 40 2.0 120 98 CM 
#14. CTZNa MeOH/BA 50 2.0 120 98 CM 
#15. CTZNa MeOH/BA 60 2.0 120 99 CM 
#16. CTZNa MeOH/BA 70 2.0 120 100 CM 
#17. CTZNa MeOH/BA 80 2.0 120 101 CM 

 
#18. CTZK MeOH/BA 30 2.0 120 98 CM 

 
#19. CTZNa MeOH/BA 30 2.0 120 99 OM-B 
#20. CTZK MeOH/BA 30 2.0 120 99 OM-B 

* OM-S – open, suction mode, OM-B – open, blowing mode, CM- closed mode. 
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Table 2. Elements of morphology classification system  

Morphology classification system 

Example 1BIIα 

Classes of 

morphology 

Shape Surface Visual morphology Interior 

1. Spherical A. Smooth I. Nonporous  α. Solid/continuous.  

2. Irregular B. Crumpled II. Porous with 

nano-sized pores 

β. Hollow.  

III. Conglomerates 

of nanoparticles 

γ. Unknown  

δ. Hollow with 

nanoparticulate 

content 
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Table 3. Morphology Classification System (MCS) of spray dried particles.  

Morphology type Description of morphology Morphology example 
Shape  

1 Spherical 

 (a) 

2 Non-spherical, irregular 

 (b) 
   

Surface 
A Smooth (a) 
B Crumpled (b) 

Visual morphology 
I Non-porous (a) 

II 
 
 

Porous with nano-sized pores 
 

 (c) 

 (d) 

1 µm 
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III Porous, conglomerates  
of nanoparticles 

 (e) 
Interior 

α Solid/Continuous 

 (f) 

β Hollow 

 (g) 
γ Unknown (a) 

δ Hollow with microparticulate 
content 

  (h) 
 
 
 



 26 

Table 4. Specific surface area, particle size, true density results and particle diameter Φ(TBET) 

calculated from specific surface area of CTZNa and CTZK spray dried from methanol/butyl acetate 

mixtures.  

Sample Specific surface 
area [m2/g] 

Median particle 
size d(50) [µm] 

Span Φ(TBET) 
[µm] 

True density  
[g/cm3] 

#1. CTZNa 1.31±0.02 2.6±0.1 1.8±0.1 3.418 1.837±0.015 
#2. CTZK 1.34±0.03 3.1±0.1 1.8±0.2 3.418 1.872±0.003 
#3. CTZNa 33.2±0.2 1.82±0.03 1.4±0.1 0.134 1.744±0.002 
#4. CTZNa 34.8±0.2 1.7±0.1 1.4±0.1 0.128 1.734±0.004 
#5. CTZNa 36.7±0.1 1.72±0.04 1.4±0.1 0.121 1.722±0.003 
#6. CTZNa 66.2±0.2 1.9±0.1 1.41±0.03 0.067 1.727±0.004 
#7. CTZNa 65.1±0.4 2.0±0.1 1.6±0.2 0.068 1.757±0.003 
#8. CTZNa 34.8±0.3 2.1±0.1 1.43±0.02 0.128 1.747±0.002 
#9. CTZNa 26.9±0.4 3.44±0.04 1.8±0.1 0.165 1.719±0.027 
#10. CTZNa 3.7±0.1 1.62±0.03 1.22±0.06 1.201 1.473±0.001 

 
#11. CTZK 57.2±0.5 2.0±0.1 1.42±0.02 0.078 1.862±0.004 

 

 

 

Table 5. Micromeritic parameters of NPMPs spray dried from 2% w/v solid concentration and 

particle diameter Φ(TBET) calculated from specific surface area.  

Sample Specific surface area 
[m2/g] 

Median particle size  
d(50) [µm] 

Span Φ(TBET) [µm] 

#12 CTZNa 52.6±0.5 2.2±0.1 1.81±0.06 0.084 
#13 CTZNa 35.7±0.3 2.1±0.02 1.74±0.08 0.124 
#14 CTZNa 31.5±0.3 2.1±0.1 1.91±0.06 0.141 
#15 CTZNa 42.6±0.4 2.4±0.2 1.83±0.07 0.104 
#16 CTZNa 40.4±0.4 2.9±0.2 1.8±0.1 0.110 
#17 CTZNa 38.5±0.2 2.7±0.1 1.9±0.1 0.115 

 
#18 CTZK 72.0±0.6 2.1±0.1 1.91±0.08 0.062 

 
#19 CTZNa 72.3±0.7 2.9±0.03 1.9±0.1 0.061 
#20 CTZK 90.2±0.9 3.1±0.1 1.9±0.1 0.049 
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