124 research outputs found

    Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression

    Get PDF
    MmpL3 is an inner membrane transporter of Mycobacterium tuberculosis responsible for the export of trehalose momomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. MmpL3 represents an emerging target for tuberculosis therapy. In this paper, we describe the construction and characterization of an mmpL3 knockdown strain of M. tuberculosis. Downregulation of mmpL3 led to a stop in bacterial division and rapid cell death, preceded by the accumulation of TDM precursors. MmpL3 was also shown to be essential for growth in monocyte-derived human macrophages. Using RNA-seq we also found that MmpL3 depletion caused up-regulation of 47 genes and down-regulation of 23 genes (at least 3-fold change and false discovery rate <= 1%). Several genes related to osmoprotection and metal homeostasis were induced, while several genes related to energy production and mycolic acids biosynthesis were repressed suggesting that inability to synthesize a correct outer membrane leads to changes in cellular permeability and a metabolic downshift

    Hpv-specific systemic antibody responses and memory b cells are independently maintained up to 6 years and in a vaccine-specific manner following immunization with cervarix and gardasil in adolescent and young adult women in vaccination programs in Italy

    Get PDF
    Human papillomavirus (HPV) persistent infections are associated with cervical cancer and other HPV-related diseases and tumors. Thus, the characterization of long lasting immunity to currently available HPV vaccines is important. A total of 149 female subjects vaccinated with Cervarix or Gardasil participated to the study and they were stratified according to age (10–12-year-old and 16–20-year-old). Humoral immune responses (IgG and neutralizing antibody titers, antibody avidity) and circulating memory B cells were analyzed after an average of 4–6 years from the third immunization. The humoral responses against HPV-16 and HPV-18 (and HPV-6 and HPV- 11 for Gardasil) were high in both age groups and vaccines up to six years from the third dose. However, Cervarix induced significantly higher and more persistent antibody responses, while the two vaccines were rather equivalent in inducing memory B cells against HPV-16 and HPV-18. Moreover, the percentage of subjects with vaccine-specific memory B cells was even superior among Gardasil vaccinees and, conversely, Cervarix vaccinated individuals with circulating antibodies, but undetectable memory B cells were found. Finally, a higher proportion of Cervarix-vaccinated subjects displayed cross-neutralizing responses against non-vaccine types HPV-31 and HPV-45. Gardasil and Cervarix may, thus, differently affect long-lasting humoral immunity from both the quantitative and qualitative point of view

    Great Artesian Basin authigenic carbonates as natural analogues for mineralisation trapping

    Get PDF
    This project is the first to comprehensively investigate the controls on the formation of authigenic carbonates in low salinity, siliciclastic aquifers of the Great Artesian Basin. These processes are\ua0natural analogues for mineralisation trapping of CO2 during geo-sequestration. Calcite is the main carbonate present. Analyses included elemental composition, C and O stable isotopes, fluid inclusion analyses including\ua0gas isotopes, SEM-EDS and QEMSCAN, and X-ray micro-CT scanning.\ua0The samples reflect\ua0a variety of fluid origins, compositions, and temperatures of precipitation.\ua0Differentiating between carbonate formed via different mechanisms, and determining controls on the extent of authigenic carbonate formation, could lead to options for engineered accelerated mineralisation in reservoirs

    Antispasmodic and vasodilator activities of Morinda citrifolia root extract are mediated through blockade of voltage dependent calcium channels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Morinda citrifolia </it>(Noni) is an edible plant with wide range of medicinal uses. It occurs exclusively in tropical climate zone from India through Southeast Asia and Australia to Eastern Polynesia and Hawaii. The objective of this study was to explore the possible mode(s) of action for its antispasmodic, vasodilator and cardio-suppressant effects to rationalize its medicinal use in gut and cardiovascular disorders.</p> <p>Methods</p> <p>Isolated tissue preparations such as, rabbit jejunum, rat and rabbit aorta and guinea pig atria were used to test the antispasmodic and cardiovascular relaxant effects and the possible mode of action(s) of the 70% aqueous-ethanolic extract of <it>Morinda citrifolia </it>roots (Mc.Cr).</p> <p>Results</p> <p>The Mc.Cr produced a concentration-dependent relaxation of spontaneous and high K<sup>+ </sup>induced contractions in isolated rabbit jejunum preparations. It also caused right ward shift in the concentration response curves of Ca<sup>++</sup>, similar to that of verapamil. In guinea-pig right atria, Mc.Cr caused inhibition of both atrial force and rate of spontaneous contractions. In rabbit thoracic aortic preparations, Mc.Cr also suppressed contractions induced by phenylephrine (1.0 μM) in normal- Ca<sup>++ </sup>and Ca<sup>++</sup>-free Kerb's solutions and by high K<sup>+</sup>, similar to that of verapamil. In rat thoracic aortic preparations, Mc.Cr also relaxed the phenylephrine (1.0 μM)-induced contractions. The vasodilatory responses were not altered in the presence of L-NAME (0.1 mM) or atropine (1.0 μM) and removal of endothelium.</p> <p>Conclusions</p> <p>These results suggest that the spasmolytic and vasodilator effects of Mc.Cr root extract are mediated possibly through blockade of voltage-dependent calcium channels and release of intracellular calcium, which may explain the medicinal use of <it>Morinda citrifolia </it>in diarrhea and hypertension. However, more detailed studies are required to assess the safety and efficacy of this plant.</p

    Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster

    Get PDF
    Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genomewide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79 % and 56–66 % of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that hav

    Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice

    Get PDF
    Cerebrovascular lesions related to congophilic amyloid angiopathy (CAA) often accompany deposition of β-amyloid (Aβ) in Alzheimer’s disease (AD), leading to disturbed cerebral blood flow and cognitive dysfunction, posing the question how cerebrovascular pathology contributes to the pathology of AD. To address this question, we characterised the morphology, biochemistry and functionality of brain blood vessels in transgenic arctic β-amyloid (arcAβ) mice expressing human amyloid precursor protein (APP) with both the familial AD-causing Swedish and Arctic mutations; these mice are characterised by strong CAA pathology. Mice were analysed at early, mid and late-stage pathology. Expression of the glucose transporter GLUT1 at the blood–brain barrier (BBB) was significantly decreased and paralleled by impaired in vivo blood-to-brain glucose transport and reduced cerebral lactate release during neuronal activation from mid-stage pathology onwards. Reductions in astrocytic GLUT1 and lactate transporters, as well as retraction of astrocyte endfeet and swelling consistent with neurovascular uncoupling, preceded wide-spread β-amyloid plaque pathology. We show that CAA at later disease stages is accompanied by severe morphological alterations of brain blood vessels including stenoses, BBB leakages and the loss of vascular smooth muscle cells (SMCs). Together, our data establish that cerebrovascular and astrocytic pathology are paralleled by impaired cerebral metabolism in arcAβ mice, and that astrocyte alterations occur already at premature stages of pathology, suggesting that astrocyte dysfunction can contribute to early behavioural and cognitive impairments seen in these mice

    Characteristics of HIV-1 Discordant Couples Enrolled in a Trial of HSV-2 Suppression to Reduce HIV-1 Transmission: The Partners Study

    Get PDF
    Background: The Partners HSV-2/HIV-1 Transmission Study (Partners Study) is a phase III, placebo-controlled trial of daily acyclovir for genital herpes (HSV-2) suppression among HIV-1/HSV-2 co-infected persons to reduce HIV-1 transmission to their HIV-1 susceptible partners, which requires recruitment of HIV-1 serodiscordant heterosexual couples. We describe the baseline characteristics of this cohort. Methods: HIV-1 serodiscordant heterosexual couples, in which the HIV-1 infected partner was HSV-2 seropositive, had a CD4 count ≥250 cells/mcL and was not on antiretroviral therapy, were enrolled at 14 sites in East and Southern Africa. Demographic, behavioral, clinical and laboratory characteristics were assessed. Results: Of the 3408 HIV-1 serodiscordant couples enrolled, 67% of the HIV-1 infected partners were women. Couples had cohabitated for a median of 5 years (range 2–9) with 28% reporting unprotected sex in the month prior to enrollment. Among HIV-1 susceptible participants, 86% of women and 59% of men were HSV-2 seropositive. Other laboratory-diagnosed sexually transmitted infections were uncommon (500 relative to <350, respectively, p<0.001). Conclusions: The Partners Study successfully enrolled a cohort of 3408 heterosexual HIV-1 serodiscordant couples in Africa at high risk for HIV-1 transmission. Follow-up of this cohort will evaluate the efficacy of acyclovir for HSV-2 suppression in preventing HIV-1 transmission and provide insights into biological and behavioral factors determining heterosexual HIV-1 transmission. Trial Registration ClinicalTrials.gov NCT0019451

    Herpes Simplex Virus Type 2 Triggers Reactivation of Kaposi's Sarcoma-Associated Herpesvirus from Latency and Collaborates with HIV-1 Tat

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) infection was necessary but not sufficient for Kaposi's sarcoma (KS) development without other cofactors. Previously, we identified that both human immunodeficiency type 1 (HIV-1) Tat and herpes simplex virus 1 (HSV-1) were important cofactors reactivating KSHV from latency. Here, we further investigated the potential of herpes simplex virus 2 (HSV-2) to influence KSHV replication and examined the role of Tat in this procedure. We demonstrated that HSV-2 was a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts, viral proteins and infectious viral particles in BCBL-1 cells. These results were further confirmed by an RNA interference experiment using small interfering RNA targeting KSHV Rta and a luciferase reporter assay testing Rta promoter-driven luciferase activity. Mechanistic studies showed that HSV-2 infection activated nuclear factor-kappa B (NF-κB) signaling pathway. Inhibition of NF-κB pathway enhanced HSV-2-mediated KSHV activation, whereas activation of NF-κB pathway suppressed KSHV replication in HSV-2-infected BCBL-1 cells. Additionally, ectopic expression of Tat enhanced HSV-2-induced KSHV replication. These novel findings suggest a role of HSV-2 in the pathogenesis of KS and provide the first laboratory evidence that Tat may participate HSV-2-mediated KSHV activation, implying the complicated pathogenesis of acquired immunodeficiency syndrome (AIDS)-related KS (AIDS-KS) patients
    corecore