191 research outputs found

    Progress in real-time photoacoustic imaging using optical ultrasound detection

    Get PDF
    Optical  phase  contrast  full  field  detection  in combination  with  a  CCD-camera  can be  used  to record  acoustic  fields.  This  allows  to  obtain  two-dimensional photoacoustic  projection  images  in real-time. The present work shows an extension of the  technique  towards  full  three-dimensional photoacoustic  tomography.  The reconstruction  of the initial three dimensional pressure distribution is a two step process. First of all, projection images of the initial pressure distribution are acquired. This is done  by  back  propagating  the  observed  wave pattern  in  frequency  space. In  the  second  step  the inverse Radon transform is applied to the obtained projection  dataset  to  reconstruct  the  initial  three dimensional pressure distribution. An experiment is performed  using  a  phantom  sample  which mimics the  properties  of  biological  samples  to  show  the overall applicability of this technique for real-time photoacoustic imaging

    Photoacoustic section imaging with integrating detectors

    Get PDF
    Photoacoustic  section  imaging  is  a  method  for visualizing  structures  with  optical contrast  in selected  layers  of  an  extended  object.  In  order  to avoid  resolution limitations  that  are  due  to commonly used ultrasound detectors of finite size, we propose  the  use  of  extended,  integrating cylindrical  elements  for  focusing  the acoustic detection  into  the  selected  section.  Two  imaging methods  based  on piezoelectric  and  optical detection  are  presented.  Resolution  limits  and results on zebra fish are demonstrated

    Mesoscopic modelling of enamel interaction with mid-infrared sub-ablative laser pulses

    Get PDF
    Using a finite element approach the authors model the influence of enamel's microstructure and water distribution on the temperature and stress at the centre of the laser spot, for a CO2 laser working at 10.6 μm, with 0.35 μs pulse duration and sub-ablative intensity. The authors found that the distribution of water in enamel significantly influences the stress generated at the end of one laser pulse: much lower (two orders of magnitude) stress values occur in models with homogeneously distributed water than in models with 0.27 vol.% water located in pores or 4 vol.% in layers. The amount of water in enamel has a strong influence on the stress distribution, but not on the maximum stress values reached. However, different water contents do not influence the temperature distribution in enamel. These results suggest that adequate modelling of the ablation mechanisms in enamel, as in other highly inhomogeneous materials, must include their structure at the mesoscopic scale

    On regularization methods of EM-Kaczmarz type

    Full text link
    We consider regularization methods of Kaczmarz type in connection with the expectation-maximization (EM) algorithm for solving ill-posed equations. For noisy data, our methods are stabilized extensions of the well established ordered-subsets expectation-maximization iteration (OS-EM). We show monotonicity properties of the methods and present a numerical experiment which indicates that the extended OS-EM methods we propose are much faster than the standard EM algorithm.Comment: 18 pages, 6 figures; On regularization methods of EM-Kaczmarz typ

    Production of nanoparticles from natural hydroxylapatite by laser ablation

    Get PDF
    Laser ablation of solids in liquids technique has been used to obtain colloidal nanoparticles from biological hydroxylapatite using pulsed as well as a continuous wave (CW) laser. Transmission electron microscopy (TEM) measurements revealed the formation of spherical particles with size distribution ranging from few nanometers to hundred nanometers and irregular submicronic particles. High resolution TEM showed that particles obtained by the use of pulsed laser were crystalline, while those obtained by the use of CW laser were amorphous. The shape and size of particles are consistent with the explosive ejection as formation mechanism

    Ultrasensitive plano-concave optical microresonators for ultrasound sensing

    Get PDF
    Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques

    Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology

    Get PDF
    Extracellular vesicles (EVs) mediate communication between cells and organisms across all 3 kingdoms of life. Several reports have demonstrated that EVs can transfer molecules between phylogenetically diverse species and can be used by parasites to alter the properties of the host environment. Whilst the concept of vesicle secretion and uptake is broad reaching, the molecular composition of these complexes is expected to be diverse based on the physiology and environmental niche of different organisms. Exosomes are one class of EVs originally defined based on their endocytic origin, as these derive from multivesicular bodies that then fuse with the plasma membrane releasing them into the extracellular environment. The term exosome has also been used to describe any small EVs recovered by high-speed ultracentrifugation, irrespective of origin since this is not always well characterized. Here, we use comparative global lipidomic analysis to examine the composition of EVs, which we term exosomes, that are secreted by the gastrointestinal nematode, Heligmosomoides polygyrus, in relation to exosomes secreted by cells of its murine host. Ultra-performance liquid chromatography – tandem mass spectrometry (UPLC-MS/MS) analysis reveals a 9- to 62-fold enrichment of plasmalogens, as well as other classes of ether glycerophospholipids, along with a relative lack of cholesterol and sphingomyelin (SM) in the nematode exosomes compared with those secreted by murine cells. Biophysical analyses of the membrane dynamics of these exosomes demonstrate increased rigidity in those from the nematode, and parallel studies with synthetic vesicles support a role of plasmalogens in stabilizing the membrane structure. These results suggest that nematodes can maintain exosome membrane structure and integrity through increased plasmalogens, compensating for diminished levels of other lipids, including cholesterol and SM. This work also illuminates the prevalence of plasmalogens in some EVs, which has not been widely reported and could have implications for the biochemical or immunomodulatory properties of EVs. Further comparative analyses such as those described here will shed light on diversity in the molecular properties of EVs that enable them to function in cross-species communication
    corecore